
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, Jul. 2021 2610
Copyright ⓒ 2021 KSII

http://doi.org/10.3837/tiis.2021.07.017 ISSN : 1976-7277

The alternative Method to Finish Modular
Exponentiation and Point Multiplication

Processes

Kritsanapong Somsuk*
Department of Computer and Communication Engineering, Faculty of Technology,

Udon Thani Rajabhat University, UDRU, Udon Thani, Thailand
e-mail: kritsanapong@udru.ac.th

*Corresponding author: Kritsanapong Somsuk

Received April 4, 2021; revised May 30, 2021; accepted June 28, 2021;
published July 31, 2021

Abstract

The aim of this paper is to propose the alternative algorithm to finish the process in public key
cryptography. In general, the proposed method can be selected to finish both of modular
exponentiation and point multiplication. Although this method is not the best method in all
cases, it may be the most efficient method when the condition responds well to this approach.
Assuming that the binary system of the exponent or the multiplier is considered and it is
divided into groups, the binary system is in excellent condition when the number of groups is
small. Each group is generated from a number of 0 that is adjacent to each other. The main
idea behind the proposed method is to convert the exponent or the multiplier as the subtraction
between two integers. For these integers, it is impossible that the bit which is equal to 1 will
be assigned in the same position. The experiment is split into two sections. The first section is
an experiment to examine the modular exponentiation. The results demonstrate that the cost
of completing the modular multiplication is decreased if the number of groups is very small.
In tables 7 – 9, four modular multiplications are required when there is one group, although
number of bits which are equal to 0 in each table is different. The second component is the
experiment to examine the point multiplication process in Elliptic Curves Cryptography. The
findings demonstrate that if the number of groups is small, the costs to compute point additions
are low. In tables 10 – 12, assigning one group is appeared, number of point addition is one
when the multiplier of a point is an even number. However, three-point additions are required
when the multiplier is an odd number. As a result, the proposed method is an alternative way
that should be used when the number of groups is minimal in order to save the costs.

Keywords: Modular Exponentiation, Modular Multiplication, Point Multiplication, Point Addition,
Public Key Cryptography

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2611

1. Introduction

One of two encryption techniques is asymmetric key cryptography, sometimes known as
public key cryptography [1]. It can be selected to implement a variety of tasks such as data
security, digital signature and key changing protocol. Using the encryption process, this
method will convert the original plaintext into an unreadable message known as the ciphertext.
The ciphertext is then sent to the receiver via the network channel. As a result, attackers cannot
decipher the information embedded in the ciphertext, though they can intercept it over the
network channel. In general, the receiver with the key can recover the original plaintext
through the decryption process. In addition, a pair of keys that is mathematically related to
each other must be chosen for the implementation. One is called the public key. It is revealed
to all members of a group. The other key is known as the private key, and it is kept secretly by
the owner. If one of the keys is chosen for encryption process, the other must be selected for
decryption. In fact, to accomplish the task, the algorithms in public key cryptography require
either a modular exponentiation process or a point multiplication process. RSA [2], the Diffie–
Hellman Protocol, and Elgamal Cryptography [3] are three examples of modular
exponentiation algorithms. Furthermore, the key must be selected as the exponent in modular
exponentiation equation. That is, when the exponent is large, this process consumes high
computation costs. The small key may be chosen to decrease the costs. Unfortunately, when
the private key is a small integer, attackers can quickly recover it. Many efficient attacking
algorithms are currently being developed to address this issue. In fact, they are intended to
solve one of the following issues: Discrete Logarithm Problem (DLP) and the RSA’s private
key disclosing. The example algorithms to solve DLP are brute force attack, Baby-Step Giant-
Step [4], Pohlig-Hellman Algorithm [5] and Index Calculus Algorithm [6]. Moreover, the
example algorithms to recover RSA’s private key are Wiener’s Attack [7], [8], [9] and the new
estimated initial value for brute force attack [10]. Therefore, the private key should be
expanded to avoid being easily attacked. Although, many techniques were proposed to speed
up modular exponentiation by using multi modular multiplications and modular squares
instead of computing modular exponentiation directly, computation time remains high
whenever the exponent’ s Hamming Weight is large, because number of modular
multiplications is based on Hamming Weight. In addition, Elliptic Curve Cryptography [11],
[12], [25], [26] is an example of a point multiplication algorithm. For calculating the point
multiplication equation, the key must be chosen as the multiplier of the point. That is, when
the multiplier is large and the Hamming weight is high, this process consumes high costs.

The purpose of this paper is to present a new special algorithm for completing one of the
modular exponentiation process and point multiplication process. The exponent in modular
exponentiation or the multiplier in point multiplication will be replaced by two integers whose
difference equals the exponent or multiplier. If the condition responds well to the given
approach, it may be the fastest algorithm to finish the task.

2. Related Works
Four parts will be discussed in this section. The first part goes through several public key
cryptography algorithms that call for modular exponentiation computing. The second part is
the reviews about the algorithms to compute modular exponentiation. Moreover, the
overviews for both of Elliptic Curve Cryptography and Point multiplication will be mentioned
in Section 2.3 and 2.4, respectively. Assigning, H(z) is Hamming Weight of z, B(z) is the

2612 Somsuk et al.: The alternative Method to Finish Modular Exponentiation
and Point Multiplication Processes

binary value of z and L(z) is bits length of z, where z ∈¢ .

2.1 The Algorithms requiring Modular Exponentiation Computing
In fact, there are three main algorithms in this group as follows:

1) Diffie – Hellman Protocol: this algorithm cannot be chosen to secure the secret
information. However, it is represented as a secret method of exchanging the secret key for all
algorithms in the symmetric key cryptography group. Assuming, Alice and Bob have to
communicate the secret information to each other by using one of symmetric key algorithms
and they have to use this protocol to exchange the secret key. Table 1 shows the process to
exchange the secret key between Alice and Bob.

Table 1. Diffie – Hellman Protocol

Alice Bob
1. Alice chooses a ∈{0, 1, 2, , p – 2} 1. Bob chooses b ∈{0, 1, 2, , p – 2}
2. Alice computes A = ga mod p 2. Bob computes B = gb mod p
3. Alice sends A to Bob 3. Bob sends B to Alice
4. Alice computes K = KA = Ba mod p 4. Bob computes K = KB = Ab mod p

 In fact, modular exponentiation occurs in step 2 on both of Alice and Bod.

2) Elgamal Cryptography: it was proposed by T. Elgamal in 1985. Moreover, Elgamal
Cryptography can be chosen for both of data security and digital signature. For data security,
it is divided into three processes as follows:

Process 1 (Key Generation Process): the process to generate a pair of keys as follows:
 Step 1: Choose prime number, p, and the primitive root, g.
 Step 2: Choose a ∈{0, 1, 2, , p – 2} to compute A = ga mod p
 Public Parameters are {p, g, A}, Private Parameter is a
 Process 2 (Encryption Process): the process to transform the plaintext as the ciphertext:
 Step 1: Choose b ∈{0, 1, 2, , p – 2} to compute B: B = gb mod p
 Step 3: Compute c: c = Abm mod p, where m is the plaintext and c is the ciphertext
 In fact, {c, B} will be transferred to the receiver, while b will be kept secretly.
 Process 3 (Decryption Process): the process to recover the plaintext by using the equation:
m = (B-1)a*c mod p.

3) RSA Cryptography: RSA was proposed in 1987. It is also chosen for both of data
security and digital signature. For data security, the processes are divided into three parts.

Process 1 (Key Generation Process): the process to generate a pair of keys as follows:
Step 1: Choose two prime numbers, p and q, randomly
Step 2: Compute modulus, n = p*q and Euler totient function, ()nΦ = (p – 1)*(q – 1)
Step 3: Select the public key, e, from two conditions, gcd(e, ()nΦ) = 1 and 1 < e < ()nΦ
Step 4: Compute the private key, d = e-1 mod ()nΦ by using [13], [14], [15].
Public Parameters are {n, e}, Private Parameters are {p, q, ()nΦ , d}
Process 2 (Encryption Process): the process to transform the plaintext as the ciphertext

by using the following equation, c = me mod n, where m is the plaintext and c is the ciphertext.
Process 3 (Decryption Process): the process to recover the plaintext by using the

following equation: m = cd mod n.
 In fact, three algorithms above require modular exponentiation computing. In addition, the
large exponent can avoid easily attacks. However, the process becomes slow. The next section
is about the overviews of some algorithms to speed up modular exponentiation.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2613

2.2 Overviews of Some Algorithms to Speed up Modular Exponentiation
In fact, many algorithms have been developed to accelerate the modular exponentiation
process. Additionally, some methods can be chosen to accelerate all public key cryptography
algorithms. However, some techniques can be applied with some algorithms as follows:

1) Chinese Remainder Theorem
The Chinese Remainder Theorem (CRT) [16], [17], [18] is a method that can be used in

conjunction with RSA to speed up the decryption process. The private key is usually given a
very large value. The time that required to complete the process is then directly affected.
Therefore, the private key is divided into two integers. In fact, these integers will be selected
as the exponents for modular exponentiation and the results will be combined to obtain the
target.

Assigning, dp = d mod p – 1, dq = d mod q – 1, mp = pdc mod p, mq = qdc mod q, yp = p-1
mod q and yq = q-1 mod p, then m can be recovered by using the equation: m = (mp*yq*q +
mq*yp*p) mod n.

2) The improved RSA’s decryption equation using the new private key
In 2016, a special equation [19] was proposed to recover plaintext encrypted with the RSA

scheme. In fact, the new integer, dt, will be chosen, as shown in the following equation: dt*e
= x mod ()nΦ and the plaintext can be recovered by using the equation: m = moddx tc n . The
condition under which this method is more efficient than the traditional decryption process is
that H(B(dt)) is smaller than H(B(d)). However, if this equation is implemented, m must be
assigned in the following scope: 1 < mx < n, where m is the plaintext.

3) The Improved RSA’s decryption equation suitable for the Large Private Key
In 2017, an improved RSA decryption equation [20] that was suitable for the large private

key was proposed to speed up the RSA decryption process. When the private key is large, this
method may be the most efficient method. Assuming x = ()nΦ - d, then the plaintext can be
computed from: m = (c-1)x mod n.

4) The Improved CRT to speed up RSA’s decryption Process
In addition, the idea in [20] is included to apply with RSA to speed up decryption process.

In fact, the technique in [21] is only the choice that will be selected when the appropriate

condition is occurred. Assuming, xp = dp – p, and y = c-1 mod p, then mp =
1xpy
−

mod p. If dp is
large, then this equation to find mp is more suitable than the traditional equation. Furthermore,
the condition for selecting the equation to find mq is similar to the concept for finding mp.

5) Fast Exponent
Fast Exponent [22] is the method to compute modular exponentiation. That is, it can be

used with any public key cryptography scheme that requires this process. Furthermore, the
outcome is derived from the computation of multi modular squares and modular
multiplications. The central idea is that the exponent will be converted to a binary system.

Assigning L(d) = l, therefore d =
1

0

l

i
i

d
−

=
∑ = (dl-1dl-2dl-3 d1d0)2 and the algorithm is as follows:

Algorithm: Fast Exponent
Input: c, n, d = dl-1dl-2dl-3 d1d0
Output: m = cd mod n

1) len  Length of d
2) t  c
3) f  t
4) i  1
5) While i <= len-1 Do

2614 Somsuk et al.: The alternative Method to Finish Modular Exponentiation
and Point Multiplication Processes

6) t  t2 mod n
7) IF di == 1 Then
8) f  (f * t) mod n
9) i  i + 1
10) End While
11) m  f

If the bit length of d is l and Fast Exponent is used to find the result, the number of modular

squares is always l – 1. Number of modular multiplications is based on H(B(d)). Therefore,
the costs to compute modular multiplications are high when Hamming Weight is large.

6) Akira’s Method
In 2000, H. Akira [23] proposed the idea to speed up modular multiplication. Then, it

implies that the algorithms requiring modular exponentiation can select Akira’s method to
accelerate the task. Assuming, n is an odd number and it is the modulus. To use Akira's method,
all prime factors of n+2 should reveal first. However, if n is large, then it is very difficult to
find all prime factors of n + 2.

2.3 Overviews of Elliptic Curve Cryptography
N. Koblitz and V. Miller presented Elliptic Curve Cryptography (ECC) as a public key
cryptography, in 1985. Because it does not require modular exponentiation, this approach
differs from the public key techniques in section 2.1. In fact, point multiplication is the main
process to find the target. Assigning, P = (xp, yp) is one of the points on the curve from the
following equation for ECC over Finite Field: y2 ≡ x3 + ax + b mod p, where a, b p∈¢ and
4a3 + 27b2 mod p ≠ 0, then point doubling process (Q = (xq, yq) = 2P) can be computed from:

xq = m2 – 2xp mod p and yq = m*(xp – xq) – yp mod p, where m =
23

2
p

p

x a

y

+
mod p. On the other

hand, point addition (R = (xr, yr) = P + Q) can be computed from: xr = m2 – xq – xp mod p and

yr = m*(xp – xr) – yp mod p where m = q p

q p

y y

x x

−

−
mod p. In addition, the point T = -P is (xp, -yp).

2.4 Point Multiplication Computing
For ECC, the main process for encrypting the plaintext and decrypting the ciphertext is point
multiplication [24]. This procedure necessitates a large number of point doublings and point
additions, which pay significant computational costs. Assuming, T = k*P, k is transformed as
the binary system before using the efficient algorithm known as the point multiplication
algorithm to speed up point multiplication. The length of k is equal to the number of point
doublings, but the length of H(B(k)) is equal to the number of point additions.
Algorithm: Point multiplication Over finite field
Input: P, p, k = kxkx-1kx-2 k1k0
Output: T = kP

1. len  Length of k
2. Pt  P
3. Pr 0
4. i  0
5. While i <= len-1 Do
6. IF ki == 1 Then
7. IF Pr = 0 Then
8. Pr = Pt

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2615

9. Else
10. Pr = Pr + Pt
11. EndIF
12. EndIF
13. Pt  2Pt
14. End While
15. T  Pr

3. The Proposed Method

Assuming, d = a - b, L(d) = x, L(a) = L(b) = x + 1, where a, b, x +∈¢ , the aim of this paper
is to find both of a and b for the new algorithm to speed up modular exponentiation. When g

+∈¢ is expressed as all modular squares necessary for Fast Exponent, the proposed approach
always requires g + 1. However, the number of iterations required to compute modular
multiplication using the proposed method is reduced when the number of groups is small. Each
group is generated from number of 0 in the binary system which is adjacent to each other.
 From, m = cd mod n = ca – b mod n = ca * (cb)-1 mod n, assigning r = cb mod n, therefore
 m = ca * r-1 mod n (1)

Furthermore, if d is represented as the ECC’s private key, then both of a and b can be also
chosen as the multiplier of the point to find the other point over ECC.
 Assuming, Q = d*P = (a – b)*P, then
 Q = a*P – b*P (2)

3.1 Finding a and b for RSA’s private key

Assigning, a =
0

k

i
i

a
=
∑ or a = akak-1ak-2a1a0 and b =

0

k

i
i

b
=
∑ or b = bkbk-1bk-2b1b0 where aj = bj

when both of them must be equal to 0. Therefore, if aj = 1, then bj = 0. On the other hand, aj
becomes 0 when bj = 1. Assuming, d is an odd number, the process to find both of a and b is
divided into two cases.
Case 1: H(B(d)) = L(d)

Assuming, L(d) = x, a and b can be assigned as a = 2x+1 and b = 1. If this condition is
occurred, the proposed method is the most suitable to finish modular exponentiation, because
there is no group of the exponent’s binary system that 0 is adjacent to each other.
Example 1: Assuming, d = 31, finding a and b
Sol. Because B(31) = 11111 and L(31) = 5, then b = 1, L(a) = 6 and a = 26 = 32.
 In addition, Table 2 shows the result of d = a – b in the binary system

Table 2. The result of d = a – b in binary system from Example 1

Variable Bit’ s Position
Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

a 1 0 0 0 0 0
b 0 0 0 0 0 1

d = a - b 0 1 1 1 1 1

 Table 2 shows that when (ca)*(c-b) mod n is used instead of cd mod n, the number of
modular multiplications is reduced. In addition, it implies that only one modular multiplication
is required in this case, although d is large.
Case 2: H(B(d)) ≠ L(d)

2616 Somsuk et al.: The alternative Method to Finish Modular Exponentiation
and Point Multiplication Processes

The process to find a and b is different from the first case. In fact, it is divided into 5 steps.
 Step 1: Assigning a = 2x+1 = axax-1ax-2a1a0, where ax = 1 and the others are 0
 Step 2: Assigning b = bxbx-1bx-2b1b0, where b0 = 1 and the others are 0
 Step 3: Considering only positions of B(d) that a number of 0 is adjacent to each other. In
fact, there may be many groups. Assigning di+2 = 1, di+1 = 0, di = 0, di-1 = 0, di-2 = 1 are members
of a group to consider step 4 and step 5.
 Step 4: Finding the first position and the last position of each group in Step 3.

1) The first position of B(d) in Step 3 which is appeared as 0 is i – 1
2) The last position of B(d) in Step 3 which is appeared as 0 is i + 1

Step 5: Changing the values of a and b as shown below:
1) ai-1 = 1, where i – 1 is the first position of B(d) that number 0 is found in a group
2) bi+2 = 1, where i + 1 is the last position of B(d) that number 0 is found in a group

Example 2: Assuming d = 57, finding a and b
Sol. First, B(57) = 111001, L(57) = 6 and H(57) = 4, each position of B(57) is as follows:

d6 d5 d4 d3 d2 d1 d0
- 1 1 1 0 0 1

Because H(d) ≠ L(d), then case 2 must be chosen to find a and b as follows:
 Step 1: a = 26 = 100000 that each position of B(a) is as follows:

a6 a5 a4 a3 a2 a1 a0
1 0 0 0 0 0 0

Step 2: b = 1 that each position of B(b) is as follows:
b6 b5 b4 b3 b2 b1 b0
0 0 0 0 0 0 1

 Step 3: It is found that d3 = 1, d2 = 0, d1 = 0, d0 = 1
 Step 4:

1) The first position of B(57) which is appeared as 0 is 1
2) The last position of B(57) which is appeared as 0 is 2

Step 5:
a1 = 1, b3 = 1

Therefore, Table 3 shows the result of d = a – b in the binary system

Table 3. The result of d = a – b in the binary system from Example 2

Variable Bit’ s Position
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

a 1 0 0 0 0 1 0
b 0 0 0 1 0 0 1

d = a - b 0 1 1 1 0 0 1

 If number of groups is very small, then equation (1) should be selected for the
implementation to decrease the cost.
Example 3: Assuming d = 101, finding a and b
Sol. B(101) = 1100101, L(101) = 7 and H(B(101)) = 4, each position of B(101) is as follows:

d7 d6 d5 d4 d3 d2 d1 d0
- 1 1 0 0 1 0 1

 Because H(d) ≠ L(d), then case 2 must be chosen to find a and b as follows:
 Step 1: a = 28 = 10000000 that each position of B(a) is as follows:

a7 a6 a5 a4 a3 a2 a1 a0
1 0 0 0 0 0 0 0

 Step 2: b = 1, then each position of B(b) is as follows:
b7 b6 b5 b4 b3 b2 b1 b0
0 0 0 0 0 0 0 1

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2617

 Step 3: This example has two groups that a number of 0 is adjacent to each other as follows:
 Group 1: d2 = 1, d1 = 0, d0 = 1
 Group 2: d5 = 1, d4 = 0, d3 = 0, d2 = 1
 Step 4: Group 1:

1) The first position in group 1 which is appeared as 0 is 1
2) The last position in group 1 which is appeared as 0 is 1
Group 2:
1) The first position in group 2 which is appeared as 0 is 3
2) The last position in group 2 which is appeared as 0 is 4

Step 5: Group 1: a1 = 1, b2 = 1, Group 2: a3 = 1, b5 = 1
Therefore, Table 4 shows the result of d = a – b in the binary system

Table 4. The result of d = a – b in the binary system from Example 3

Variable Bit’ s Position
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

a 1 0 0 0 1 0 1 0
b 0 0 1 0 0 1 0 1

d = a - b 0 1 1 0 0 1 0 1

3.2 The alternative method to compute modular exponentiation
Assigning both of a and b are found, the steps to prepare the new exponent for the
improvement of Fast Exponent are as follows:
 Step 1: Changing all positions of bi which equal to 1 as 2
 Step 2: Computing f = fxfx-1fx-2 f1f0, where fi = ai + bi

Note: fi is not a bit in the binary system but it is just one of the following digits: 0, 1 or 2
to be referred in the proposed algorithm.
 After c is found, the proposed algorithm can be selected to compute modular exponentiation
by using f as the exponent instead of d that the result is not changed.
Algorithm: The Improvement of Fast Exponent
Input: c, n, f = fxfx-1fx-2 f1f0
Output: m = cd mod n

1. len  Length of f
2. m'  c
3. ma  1
4. mb  m'
5. i  1
6. While i <= len-1 Do
7. m'  (m')2 mod n
8. IF fi == 1 Then
9. ma  (ma * m') mod n
10. Else IF fi == 2 Then
11. mb  (mb * m') mod n
12. End IF
13. i  i + 1
14. End While

15. r 
1

bm−
 mod n

16. m  ma * r mod n
Because d is always an odd integer, it implies that f0 = 2. Therefore, in step 3 and step 4,

ma and mb are always begun as 1 and c, respectively. In addition, modular multiplication will
be implemented when fi = 1 or 2. The number of steps to compute modular multiplication is
the result of H(B(a)) + H(B(b)). In fact, time to finish modular exponentiation by using the
Improvement of Fast Exponent is low whenever number of groups is small.

2618 Somsuk et al.: The alternative Method to Finish Modular Exponentiation
and Point Multiplication Processes

Example 4: Computing 72035 mod 137
Sol: Because B(2035) = 111111100112, then a = 1000000001002, b = 0000000100012 and f
= 100000020102, each position of f = f8f7f6f5f4f3f2f1f0 is as follows:

f11 f10 f9 f8 f7 f6 f5 f4 f3 f2 f1 f0
1 0 0 0 0 0 0 2 0 1 0 2

From, the Improvement of Fast Exponent,
 Step 1-5: len = 12, m' = 7, ma = 1, mb = 7, i = 1

Step 6 -14, Loops
Loop 1: (i = 1 <= 11)
 Step 7: m' = 72 mod 137 = 49,  modular square
 Because f1 = 0, continuing to Step 13, i = 2
Loop 2: (i = 2 <= 11)
 Step 7: m' = 492 mod 137 = 72,  modular square
 Because f2 = 1, Step 9 is required
 Step 9: ma = (1 * 72) mod 137 = 72  modular multiplication
Loop 3: (i = 3 <= 11)
 Step 7: m' = 722 mod 137 = 115,  modular square
 Because f3 = 0, continuing to Step 13, i = 4
Loop 4: (i = 4 <= 11)
 Step 7: m' = 1152 mod 137 = 73,  modular square
 Because f4 = 2, Step 11 is required
 Step 11: mb = (7 * 73) mod 137 = 100  modular multiplication
Loop 5: (i = 5 <= 11)
 Step 7: m' = 732 mod 137 = 123,  modular square
 Because f5 = 0, continuing to Step 13, i = 6
Loop 6: (i = 6 <= 11)
 Step 7: m' = 1232 mod 137 = 59,  modular square
 Because f6 = 0, continuing to Step 13, i = 7
Loop 7: (i = 7 <= 11)
 Step 7: m' = 592 mod 137 = 56,  modular square
 Because f7 = 0, continuing to Step 13, i = 8
Loop 8: (i = 8 <= 11)
 Step 7: m' = 562 mod 137 = 122,  modular square
 Because f8 = 0, continuing to Step 13, i = 9
Loop 9: (i = 9 <= 11)
 Step 7: m' = 1222 mod 137 = 88,  modular square
 Because f9 = 0, continuing to Step 13, i = 10
Loop 10: (i = 10 <= 11)
 Step 7: m' = 882 mod 137 = 72,  modular square
 Because f10 = 0, continuing to Step 13, i = 11
Loop 11: (i = 11 <= 11)
 Step 7: m' = 722 mod 137 = 115,  modular square
 Because f11 = 1, Step 9 is required
 Step 9: ma = (72 * 115) mod 137 = 60  modular multiplication
Because i = 11, jumping out of the loop.
Step 15: r = 100-1 mod 137 = 37  modular inverse
Step 16: m = 60 * 37 mod 137 = 28  modular multiplication

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2619

Therefore, 72035 mod 137 = 28. In fact, in this example, the proposed method requires 11
modular squares, 1 modular inverse and 4 modular multiplications, total costs are 11+4+1 =
16. However, if Fast Exponent is chosen, it requires 10 modular squares and 8 modular
multiplications, total costs are 10+8 = 18. As a result, it implies that the total costs to finish
modular exponentiation by using the proposed method is less than Fast Exponent.

In general, number of modular multiplications by using the proposed method is based on
number of groups that 0 is adjacent to each other. It is different from Fast Exponent that
number of modular multiplications is depended on Hamming Weight of the exponent. As a
result, when the number of groups is small, the proposed method can complete the procedure
rapidly. Furthermore, as compared to combining CRT and RSA, this method can be applied
with CRT to reduce the time required to complete the decryption process.

Consider the equation to find mp: Assuming, dp = ap – bp, where ap and bp ∈¢ , then

From, mp = d pc mod p = ()ap pb
c

− mod p = apc * 1()
bpc − mod p

Assigning, rp = bpc mod p, then

 mp = a pc * 1

p
r − mod p (3)

Consider the equation to find mq: Assuming, dq = aq – bq, where aq and bq ∈¢ , then

From, mq = dqc mod q = ()aq qb
c

− mod q = aqc * 1()
bqc − mod q

Assigning, rq = bqc mod q, then

 mq = aqc * 1

q
r − mod q (4)

Assuming, fp = ap + bp, fq = aq + bq, np is number of groups in fp and nq is number of groups
in fq where H(dp) and H(dq) are high, there are four cases to select the best parameters to finish
both of mp and mq as follows:

Case 1: np and nq are small
 mp = apc * 1

p
r − mod p and mq = aqc * 1

q
r − mod q The Proposed Method

Case 2: np is high, nq is small
 The best algorithm to compute mp should be decided after all parameters are analyzed

mq = aqc * 1

q
r − mod q  The Proposed Method

Case 3: np is small, nq is high
 mp = apc * 1

p
r − mod p  The Proposed Method

The best algorithm to compute mq should be decided after all parameters are analyzed
Case 4: np and nq are high
The best algorithm to compute mp and mq should be decided after all parameters are

analyzed deeply. Based on the preceding cases, it follows that the proposed method is selected
to compute the equation in cases 1, 2, and 3 for the quickest process.

3.3 The alternative method to point multiplication
The concept of the proposed method in section 3.1 and section 3.2 can be also applied with
ECC over finite field to speed up point multiplication. Assuming, d is the multiplier of the
point, P, and d = a – b, then T = d*P = (a – b)*P. However, for ECC, d can be either an odd
number or an even number. Therefore, the process to find both of a and b for an even value of
the multiplier must be also considered. Based on the number of groups, the multiplier is

2620 Somsuk et al.: The alternative Method to Finish Modular Exponentiation
and Point Multiplication Processes

divided into two cases.
Case 1: One group that a number of 0 is adjacent to each other and the position is from the
least significant bit to the l position, where l is the last position that bit’s value is equal to 0

In fact, a and b can be assigned as a = 2x+1 and b = 2l+1.

Example 5: Assuming d = 60, finding a and b
Sol. Because B(60) = 111100, L(60) = 6, l = 1, b = 22 = 4 = 1002, L(a) = 6 and a = 26.
 In addition, Table 5 shows the result of d = a – b in the binary system

Table 5. The result of d = a – b in the binary system from Example 5

Variable Bit’ s Position
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

a 1 0 0 0 0 0 0
b 0 0 0 0 1 0 0

d = a - b 0 1 1 1 1 0 0

The information in Table 5 shows that H(B(b)) + H(B(a)) < H(B(d)), then it implies that

number of point additions is decreased.
Case 2: Multi groups that a number of 0 is adjacent to each. In this case, the process to find
pattern in the first group is similar to case 1. However, the process to find the patterns in the
other groups are similar to case 2 in section 3.1.
Example 6: Assuming d = 1662, finding a and b
Sol. B(1662) = 11001111110, L(1662) = 11 and H(B(1662)) = 8, then

d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0
1 1 0 0 1 1 1 1 1 1 0

Because, there are two groups of number 0 that is adjacent to each other, then

Considering group 1:
 First, assigning a = 212 = 100000000000 that each position of B(a) is as follows:

a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0
1 0 0 0 0 0 0 0 0 0 0 0
Because, the 2nd position is the first position that bit’s value equal to 1, therefore b1 = 1,

b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
0 0 0 0 0 0 0 0 0 0 1 0

Considering group 2:
In group 2, it is found that d9 = 1, d8 = 0, d7 = 0, d6 = 1, then

1) The first position of B(1662) which is appeared as 0 in the second group is 7
2) The last position of B(1662) which is appeared as 0 in the second group is 8

 Therefore,
a7 = 1, b9 = 1

Table 6 shows the result of d = a – b in the binary system

Table 6. The result of d = a – b in binary system from Example 6
Variable Bit’ s Position

11 10 9 8 7 6 5 4 3 2 1 0
a 1 0 0 0 1 0 0 0 0 0 0 0
b 0 0 1 0 0 0 0 0 0 0 1 0

d = a - b 0 1 1 0 0 1 1 1 1 1 1 0

group 1 group 2

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2621

 In addition, after both of a and b are found, f = fxfx-1fx-2 f1f0, where fi = ai + bi and fi = 2
when bi = 1, must be also computed for the proposed algorithm, known as the Improvement
of Point multiplication Over finite field. In example 6, f = 102010000020. Assuming f is found,
the Improvement of Point multiplication Over finite field is as follows:

Algorithm: The Improvement of Point multiplication Over Finite Field
Input: P, p, fxfx-1fx-2 f1f0 which are the representative of d
Output: Q = d*P

1) len  Length of f
2) Pt  P
3) Pr 0
4) Ps  0
5) i  0
6) While i <= len-1 Do
7) IF fi == 1 Then
8) IF Pr = 0 Then
9) Pr  Pt
10) Else
11) Pr  Pr + Pt
12) EndIF
13) Else IF fi == 2 Then
14) IF Ps = 0 Then
15) Ps  Pt
16) Else
17) Ps  Ps + Pt
18) EndIF
19) EndIF
20) Pt  2Pt
21) i  i + 1
22) End While
23) Q  Pr + (-Ps)

Example 7: Assuming y2 ≡ x3 + 419x + 21351 mod 24359 and P = (1217, 331), finding Q =
1662*P by using The Improvement of Point multiplication Over Finite Field
Sol. In example 6, f = 102010000020, then Q = 1662*P can be computed by using The
Improvement of Point multiplication Over Finite Field as follows:

Step 1-5: len = 12, Pt = (1217, 331), Pr = 0, Ps = 0, i = 0
Steps 6 -21, Loops
Loop 1: (i = 0 <= 12)
 Because f0 = 0, then there is no required step which is in condition.
 Step 20: Pt = 2Pt = (20589, 11022)  Point Doubling
Loop 2: (i = 1 <= 12)
 Because f1 = 2, then steps 13 – 19 are required
 Because Ps = 0, then Steps 14 – 15 are required
 Step 15: Ps = Pt = (20589, 11022)
 Step 20: Pt = 2Pt = (3638, 18887)  Point Doubling
Loop 3: (i = 2 <= 12)
 Because f2 = 0, then there is no required step which is in the condition.
 Step 20: Pt = 2Pt = (18533, 2525)  Point Doubling
Loop 4: (i = 3 <= 12)
 Because f3 = 0, then there is no step which is required in the condition.
 Step 20: Pt = 2Pt = (22671, 20089)  Point Doubling
Loop 5: (i = 4 <= 12)

2622 Somsuk et al.: The alternative Method to Finish Modular Exponentiation
and Point Multiplication Processes

 Because f4 = 0, then there is no step which is required in the condition.
 Step 20: Pt = 2Pt = (16158, 22384)  Point Doubling
Loop 6: (i = 5 <= 12)
 Because f5 = 0, then there is no step which is required in the condition.
 Step 20: Pt = 2Pt = (10647, 1447)  Point Doubling
Loop 7: (i = 6 <= 12)
 Because f6 = 0, then there is no step which is required in the condition.
 Step 20: Pt = 2Pt = (4829, 22146)  Point Doubling
Loop 8: (i = 7 <= 12)
 Because f7 = 1, then steps 7 – 12 are required
 Because Pr = 0, then Steps 8 – 9 are required
 Step 8: Pr = Pt = (4829, 22146)
 Step 20: Pt = 2Pt = (19682, 16531)  Point Doubling
Loop 9: (i = 8 <= 12)
 Because f8 = 0, then there is no step which is required in the condition.
 Step 20: Pt = 2Pt = (8041, 16914)  Point Doubling
Loop 10: (i = 9 <= 12)
 Because f9 = 2, then steps 13 – 19 are required
 Because Ps ≠ 0, then Steps 16 – 18 are required
 Step 17: Ps = Ps + Pt = (17983, 22767)  Point Addition
 Step 20: Pt = 2Pt = (16002, 21223)  Point Doubling
Loop 11: (i = 10 <= 12)
 Because f10 = 0, then there is no step which is required in the condition.
 Step 20: Pt = 2Pt = (17585, 12707)  Point Doubling
Loop 12: (i = 11 <= 12)
 Because f11 = 1, then steps 7 – 12 are required
 Because Pr ≠ 0, then Steps 10 – 12 are required
 Step 8: Pr = Pr + Pt = (17230, 12579)  Point Addition
 Step 20: Pt = 2Pt = (21206, 993)  Point Doubling
End of Loop
Step 23: Q = Pr + (-Ps) = (6797, 4186)  Point Addition

Therefore, Q = 1662*P = (6797, 4186). In fact, in this example, the proposed method
requires 12-point doublings and 3-point additions, total costs are 12 + 3 = 15. However, if
point multiplication algorithm is chosen, it requires 11-point doublings and 7-point additions,
total costs are 11 + 7 = 18. Therefore, in this example, it implies that the total costs to finish
point multiplication by using the proposed method is less than point multiplication algorithm.

4. Experimental Results
The experimental results will be displayed and discussed in this section. The experiment is
divided into two sections. Part 1 is a cost comparison of the proposed method and Fast
Exponent for computing modular exponentiation. Part 2 will show and discuss the cost
comparison of computing point doubling and point addition to find the new point over the
curve.

4.1 Experimental Results from Modular Exponentiation Computing
In this part, the comparison about the costs to compute c = ab mod n between Fast Exponent
and the proposed method is discussed. There are three different costs for the consideration,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2623

modular square, modular multiplication and modular inverse. Bit’s length of all values of n
and b in this section are assigned as 1024 and 900, respectively. In addition, 10 – 15 cases
which are considered from number of groups are selected to analyze the performance.

Table 7. Modular Square and Modular Multiplication for 1024 bits of Modulus, 900 bits of the exponent

and number of bits which is equal to 0 are 10
Algorithm Number of

Groups
(X)

Modular Square Modular Multiplication

Modular Inverse

Fast Exponent - 899 889 -
The Proposed

Method
1 900 4 1
2 6
3 8
4 10
5 12
6 14
7 16
8 18
9 20

10 22

 H(b) in Table 7 is 890. However, the distribution of each bit that equals to 0 is divided
into 10 cases. Each case is determined by the number of groups in which 0 is adjacent to each
other. The experimental results show that costs of Fast Exponent are stable, 899 modular
squares and 889 modular multiplications. The reason is that Fast Exponent is depended on
Hamming Weight and H(B(b)) is stable, H(B(b)) = 890. However, the proposed method is not
depended on the Hamming Weight. It is based on only number of groups in which 0 is adjacent
to each other. The information shows that the number of modular squares is not changed, but
the number of modular multiplications is based on the number of groups. In fact, the proposed
method can finish the process rapidly when number of groups is small. In this table, if there is
only one group, the number of modular multiplications is only four. Furthermore, 22 modular
multiplications are the maximum costs, because number of bits which are equal to 0 are always
10 for all exponent in this experiment. On the other hand, 899 modular multiplications are
required for Fast Exponent. Although modular inverse is required for the proposed method, it
is only used once to find the result.

Table 8. Modular Square and Modular Multiplication for 1024 bits of Modulus, 900 bits of the exponent

and number of bits which equal to 0 are 100
Algorithm Number of

Groups
(X)

Modular Square Modular Multiplication

Modular Inverse

Fast Exponent - 899 799 -
The Proposed

Method
1 900 4 1
2 6
3 8
4 10
5 12
6 14
7 16
8 18
9 20

10 22
100 202

2624 Somsuk et al.: The alternative Method to Finish Modular Exponentiation
and Point Multiplication Processes

Table 8 differs from Table 7 in terms of the number of bits equal to 0. In fact, there are
100 bits in Table 8. Because Hamming Weight is lower than the information in Table 7, the
experimental results show that the number of modular multiplications in Fast Exponent is
reduced. However, for each case of the proposed technique, the number of modular
multiplications is stable. Nonetheless, the worst case from the proposed methods is that all
neighbors of a bit equal to 0 are 1. In fact, there are 202 modular multiplications in this case.
However, they are still cheaper than the costs in Fast Exponent.

In Table 9, the number of bits in the exponent that are equal to 0 is 400, and the worst case
of modular multiplications for the proposed method is 802. The costs are higher than the same
process in Fast Exponent, only 499 modular multiplications are required. However, there are
the most of groups which are 248 in the proposed method, despite the fact that the number of
modular multiplications is still less than 499. As a result, it is very likely that the proposed
method will be chosen as the quickest method to complete the modular exponentiation process.

Table 9. Modular Square and Modular Multiplication for 1024 bits of Modulus, 900 bits of the exponent

and number of bits which equal to 0 are 400
Algorithm Number of

Groups
(X)

Modular Square Modular Multiplication

Modular Inverse

Fast Exponent - 899 499 -
The Proposed

Method
1 900 4 1
2 6
3 8
4 10
5 12
6 14
7 16
8 18
9 20

10 22
100 202
200 402
248 498
249 500
400 802

4.2 Experimental Results from Point Multiplication Computing

This section compares the costs of computing Q = d*P over a finite field p¢ using the Point
Multiplication Algorithm and the proposed method. There are two costs to consider: point
doubling and point addition. All values of modulus (p) and d in this section have bit lengths
of 160 and 150, respectively. Furthermore, 10 – 15 cases from a number of groups are chosen
for performance analysis. Because d can be either an odd number or an even number, both
types are selected for the implementation.

H(d) in Table 10 is 140, then number of bits with a value of 0 is 10. The distribution of
each bit that equals to 0 is divided into ten cases. The experimental results show that the Point
Multiplication Algorithm’s costs are constant, with 150-point doublings and 139-point
additions. In fact, H(d) is always stable and number of point additions for Point Multiplication
Algorithm is based on H(d). On the other hand, the proposed method which is not depended
on the Hamming Weight is based on only number of groups that 0 is adjacent to each other.
The information shows that number of point doublings is stable but number of point additions
is based on number of groups. In general, the proposed method can finish the process rapidly
when number of groups is small. If there is one group, number of point additions is always

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2625

one when d is an even number but they are three when d is an odd number. Furthermore, the
proposed method’s maximum costs are 21-point additions, because the number of bits equal
to 0 is always 10. On the other hand, 139-point additions are required for Point Multiplication
Algorithm.

Table 10. Point doubling and Point Addition for 160 bits of the modulus, 150 bits of the multiplier and

number of bits which are equal to 0 are 10
Algorithm Number of Groups

(X)
Point Doubling Point Addition

d is an even number d is an odd
number

Point Multiplication
Algorithm

- 150 139 139

The Proposed Method 1 151 1 3
2 3 5
3 5 7
4 7 9
5 9 11
6 11 13
7 13 15
8 15 17
9 17 19

10 19 21

Table 11. Point doubling and Point Addition for 160 bits of the modulus, 150 bits of the multiplier and

number of bits which equal to 0 are 50
Algorithm Number of Groups

(X)
Point Doubling Point Addition

d is an even
number

d is an odd
number

Point Multiplication
Algorithm

- 150 99 99

The Proposed Method 1 151 1 3
2 3 5
3 5 7
4 7 9
5 9 11
6 11 13
7 13 15
8 15 17
9 17 19

10 19 21
49 97 99
50 99 101

 Table 11 differs from Table 10 in terms of the number of bits equal to 0. In fact, there are
50 bits in this table. Because Hamming Weight is lower than the information in Table 10, the
experimental results show that the number of point additions in the Point Multiplication
Algorithm is reduced. However, number of point additions for each case of the proposed
method is stable. Furthermore, the worst case from the proposed methods is that all neighbors
of a bit equal to 0 are 1. Table 11 shows what happens when there are 50 groups, the number
of point additions is 99 for an even multiplier and it is 101 for an odd multiplier. Furthermore,
50 groups are only the condition that the costs of the proposed method are greater than the
costs of the Point Multiplication Algorithm. As a result, if the bit length of d is 150 bits and
H(d) = 100, the proposed method has 50 cases. If the condition of d falls between cases 1 and
49, the proposed method should be used for implementation.

2626 Somsuk et al.: The alternative Method to Finish Modular Exponentiation
and Point Multiplication Processes

In Table 12, number of bits which are equal to 0 is 70, the results show that the costs to
compute both of point addition and point doubling are similar to the results in Table 11 when
1 – 50 groups are considered. That is, the proposed method should be chosen to complete the
process when the number of groups is between 1 and 24, because number of point additions
by using Point Multiplication Algorithm is reduced to 49. However, when the number of
groups exceeds to 25, the method becomes inefficient. The maximum groups in Table 12 are
70. It demonstrates that, while number of point doublings remain stable, number of point
additions are the most expensive cost.

As a result, when the number of groups is small, the proposed method is very efficient.
Assuming length of d is k bits, number of processes to compute point doubling is always k +
1. However, point addition is based on number of groups. In fact, two-point addition processes
are required for each group. It implies that the proposed method is faster than Point
Multiplication Algorithm when number of groups is small. On the other hand, it becomes an
inefficient method when number of groups is large. However, the efficiency of point
multiplication algorithm is based on Hamming Weight of the multiplier. From Table 10 - 12,
the best performance of this algorithm is in Table 12, because Hamming Weight is the smallest
when it is compared with the multipliers in Table 10 and Table 11.

Table 12. Point doubling and Point Addition for 160 bits of the modulus, 150 bits of the multiplier and

number of bits which equal to 0 are 70
Algorithm Number of Groups

(X)
Point Doubling Point Addition

d is an even
number

d is an odd
number

Point multiplication
algorithm

- 150 49 49

The Proposed Method 1 151 1 3
2 3 5
3 5 7
4 7 9
5 9 11
6 11 13
7 13 15
8 15 17
9 17 19

10 19 21
24 47 49
25 49 51
50 99 101
70 139 141

4.3 Experimental Results about Computation Time
This section mentions time to finish the process. To control the same settings, all experiments
were performed on a 2.53 GHz Intel® Core i5 with 8 GB memory. BigInteger class in Java is
chosen to manage the variables that are large. The experiment is split into two sections. The
first section compares modular multiplication with completion. The other is a comparison to
finish point multiplication. Because the proposed method performs well when number of
groups is small, one group and two groups are selected for the experiment to assure this
mention.
 In Fig. 1 shows a comparison between Fast Exponent and the proposed method. Two cases
are chosen to examine the outcome of the proposed method. When there is only one group, the
proposed method (1) produces the result, and when there are two groups, the proposed method
(2) produces the result. The bit lengths of the modulus and the exponent are 1024 and 1000,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2627

respectively. However, there are seven cases of Hamming Weight of the exponent, which are
8, 98, 198, 398, 598, 798 and 998. The experimental results show that both of the proposed
method (1) and (2) are faster than Fast Exponent. Furthermore, it is quite stable, with a time
span of 18.46 to 20.66 msec. When Fast Exponent is used, the time to complete the process
ranges from 21.16 to 52.03 msec. In Fig. 2 shows a comparison between Point Multiplication
and the proposed method. Two cases are chosen to examine the outcome of the proposed
method. When there is only one group, the proposed method (3) produces the result, and when
there are two groups, the proposed method (4) produces the result. The bit lengths of the
modulus and the multiplier are 160 and 150, respectively. However, there are seven cases of
Hamming Weight of the multiplier, which are 8, 18, 38, 58, 88, 118 and 148. The experimental
results show that both of the proposed method (3) and (4) are faster than Point Multiplication.
Furthermore, it is quite stable, with a time span of 6.29 to 7.22 msec. When Point
Multiplication is used, the time to complete the process ranges from 17.41 to 24.97 msec.

Fig. 1. Time to finish Modular Exponentiation

Fig. 2. Time to finish Point Multiplication

 Furthermore, the information in Fig. 1 and Fig. 2 demonstrates that the proposed method

2628 Somsuk et al.: The alternative Method to Finish Modular Exponentiation
and Point Multiplication Processes

is the most efficient way to complete the task when the condition is correctly responding to
this procedure. Furthermore, the information in sections 4.1 and 4.2 shows that Hamming
Weight is unaffected to the proposed method. It is based solely on the number of groups and
length. On the other hand, Fast Exponent and Point Multiplication are based on Hamming
Weight and length of n. However, when security is taken into account, one group may be
vulnerable. Assigning, d is represented as the exponent or the multiplier and there is only one
group, Maximum loop to discover d is L(d) and it is the worst case. On the other hand, if at
least two groups are selected, there are numerous patterns to generate d. Assuming d’s bit
length is 10, all of these values are examples of d that has two groups: 1010111111,
1001110011, 1101011111, 1111000010, 1010001111, 1100100011 etc. Therefore, it is very
difficult to discover d when there are at least two groups. In addition, d is provided a value
greater than 10 bits in a real world. This means that the pattern’s range has been broadened.
However, to avoid easily attacks, such as brute force attack, number of bits that is equal to 0
should not be assigned too large.
 Next, total loops to finish process are considered. For RSA, assigning M is number of
modular multiplication and I is represented as one modular inverse. Number of modular
squares is always equal to L(d). However, M is based on number of groups. Therefore, total
loops to finish task are:

 tR = L(d) + M + I (5)

 where tR is total loops to finish modular exponentiation
 In fact, total loops for Fast Exponent are about L(d) – 1 + Mf, where Mf is number of
modular multiplications. In general, it is high possible that Mf is very bigger than M when
number of groups is small.
 In addition, assigning, A is number of point addition for ECC, number of point doubling is
always equal to L(d)+1. However, A is based on number of groups. Therefore, total loops to
finish task are:
 tE = L(d) + 1 + A (6)

 where tE is total loops to finish point multiplication
 In fact, total loops for Point Multiplication are about L(d) + Ap, where Ap is number of
point additions. In general, it is high possible that Ap is very bigger than A when number of
groups is small.

5. Conclusion
In this paper, the new special method is presented. Assuming that the number of groups is
generated from number of 0 in the binary system that is adjacent to each other, the following
is the condition under which the proposed method should be chosen; For modular
exponentiation, number of groups of the exponent’s binary value is very small, because there
are only a few modular multiplications. Nevertheless, number of groups of the multiplier’s
binary value is very small for point multiplication because there are only a few point additions.
The main process of the proposed method is to select two integers whose difference equals to
the exponent or the multiplier instead of one of these values. When the number of groups is
very small, the experimental results for modular exponentiation computation show that the
proposed method is the fastest algorithm, because the number of modular multiplications is
small. In addition, the proposed method is also the best algorithm to finish point multiplication
process when number of groups is small.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2629

References
[1] W. Diffie and M.E. Hellman, “New directions in cryptography,” IEEE Transactions on

Information Theory, vol. 22, pp. 644 – 654, 1976. Article (CrossRef Link) .
[2] R.L. Rivest, A. Shamir and L. Adleman, “A method for obtaining digital signatures and public key

cryptosystems,” Communications of ACM, vol. 21, pp. 120 – 126, 1978. Article (CrossRef Link) .
[3] T. ElGamal, “A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms,”

IEEE Transactions on Information Theory, vol. 31, pp. 469 – 472, 1985. Article (CrossRef Link) .
[4] E. Bach and B. Sandlund, “Baby-step giant-step algorithms for the symmetric group,” Journal of

Symbolic Computation, vol. 85, pp. 55 – 71, 2018. Article (CrossRef Link) .
[5] E. Teske, “The Pohlig–Hellman Method Generalized for Group Structure Computation,” Journal

of Symbolic Computation, vol. 27(6), pp. 521 – 534, 1999. Article (CrossRef Link) .
[6] R.Padmavathy and C. Bhagvati, “Discrete logarithm problem using index calculus method,”

Mathematical and Computer Modelling, vol. 55(1-2), pp.161-169, 2012. Article (CrossRef Link) .
[7] M. Wiener, “Cryptanalysis of short RSA secret exponents,” IEEE Transactions on Information

Theory, vol. 36, pp. 553 - 558, 1990. Article (CrossRef Link) .
[8] D. Boneh, and G. Durfee, “Cryptanalysis of RSA with Private Key d less than N0.292,” IEEE

Transactions on Information Theory, vol. 46, no. 4, pp. 1339-1349, 2000. Article (CrossRef Link) .
[9] M.E. Wu, C.M. Chen, Y.H. Lin and H.M. Sun, “On the Improvement of Wiener Attack on RSA

with Small Private Exponent,” The Scientific World Journal, vol. 2014, pp. 1 - 9, 2014.
Article (CrossRef Link) .

[10] K. Somsuk, “A New Methodology to Find Private Key of RSA Based on Euler Totient Function,”
Baghdad Science Journal, vol. 18(2), pp. 338 - 348, 2021. Article (CrossRef Link)

[11] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of Computation, vol. 48, pp. 203 - 209,
1987. Article (CrossRef Link) .

[12] V.S. Miller, “Uses of elliptic curves in cryptography,” Lecture Notes in Computer Science, vol.
218, pp. 417 - 426, 1986. Article (CrossRef Link) .

[13] Q. Zhou, C. Tian, H. Zhang, J. Yu and F. Li, “How to securely outsource the extended Euclidean
algorithm for large-scale polynomials over finite fields,” Information Sciences, vol. 512, pp. 641
- 660, 2020. Article (CrossRef Link) .

[14] I. Hazmi, F. Gebali and A. Ibrahim, “High Speed and Low Area Complexity Extended Euclidean
Inversion Over Binary Fields,” IEEE Transactions on Consumer Electronics, vol. 65(3), pp. 408
- 417, 2019. Article (CrossRef Link) .

[15] S.J. Horng, S.F. Tzeng, P. Fan, X. Wang, T. Li and M.K. Khan, “Secure Convertible Undeniable
Signature Scheme Using Extended Euclidean Algorithm without Random Oracles,” KSII
Transactions on Internet and Information Systems, vol. 7(6), pp. 1512 - 1532, 2013.
Article (CrossRef Link) .

[16] S.G.R. Ekodeck and R. Ndoundam, “PDF steganography based on Chinese Remainder Theorem,”
Journal of Information Security and Applications, vol. 29, pp. 1 - 15, 2016. Article (CrossRef Link)

[17] R. Zhong and J. Ma, “An algorithm for the chinese remainder problem,” International Journal of
Computer Mathematics, vol. 64(3-4), pp. 225 - 233, 1997. Article (CrossRef Link) .

[18] S. Qina, Z. Tan, B. Zhang and F. Zhou, “Distributed secret sharing scheme based on the high-
dimensional rotation paraboloid,” Journal of Information Security and Applications, vol. 58, pp. 1
- 10, 2021. Article (CrossRef Link) .

[19] K. Somsuk, “The improving decryption process of RSA by choosing new private key,” in Proc.
of International Conference on Information Technology and Electrical Engineering, pp. 1 – 4,
August 5 – 6, 2016. Article (CrossRef Link) .

[20] K. Somsuk, “The New Equation for RSA's Decryption Process Appropriate with High Private Key
Exponent,” in Proc. of International Computer Science and Engineering Conference, pp. 45 – 48,
November 15 - 18, 2017. Article (CrossRef Link) .

[21] K. Somsuk, T. Chiawchanwattana and C. Sanemueang, “Speed up RSA’s Decryption Process with
Large sub Exponents using Improved CRT,” in Proc. of International Conference on Information
Technology, pp. 1 – 5, October 24 – 26, 2018. Article (CrossRef Link) .

https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1145/359340.359342
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1016/j.jsc.2017.07.003
https://doi.org/10.1006/jsco.1999.0279
https://doi.org/10.1016/j.mcm.2011.02.022
https://doi.org/10.1109/18.54902
https://doi.org/10.1109/18.850673
https://doi.org/10.1155/2014/650537
https://doi.org/10.21123/bsj.2021.18.2.0338
https://doi.org/10.1090/S0025-5718-1987-0866109-5
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1016/j.ins.2019.10.007
https://doi.org/10.1109/TCE.2019.2912974
https://doi.org/10.3837/tiis.2013.06.010
https://doi.org/10.1016/j.jisa.2015.11.008
https://doi.org/10.1080/00207169708804586
https://doi.org/10.1016/j.jisa.2021.102797
https://doi.org/10.1109/ICITEED.2016.7863242
https://doi.org/10.1109/ICSEC.2017.8443858
https://doi.org/10.23919/INCIT.2018.8584868

2630 Somsuk et al.: The alternative Method to Finish Modular Exponentiation
and Point Multiplication Processes

[22] T.Q. Ban, T.T.T. Nguyen, V.T. Long, P.D. Dung and B.T. Tung, “A Benchmarking of the
Effectiveness of Modular Exponentiation Algorithms using the library GMP in C language,” in
Proc. of International Conference on Computational Intelligence, pp. 237 – 241, October 8 – 9,
2020. Article (CrossRef Link) .

[23] H. Akira, “A New Fast Modular Multiplication Method and Its Application to Modular
Exponentiation-Based Cryptography,” Electronics and Communications in Japan Part 3, vol.
83(12), pp. 88 - 93, 2000. Article (CrossRef Link) .

[24] H. Li, “Pseudo-random scalar multiplication based on group isomorphism,” Journal of
Information Security and Applications, vol. 53, pp. 1 - 14, 2020. Article (CrossRef Link) .

[25] L. Cao and W. Ge, “Analysis of Certificateless Signcryption Schemes and Construction of a Secure
and Efficient Pairing-free one based on ECC,” KSII Transactions on Internet and Information
Systems, vol. 12(9), pp. 4527 - 4547, 2018. Article (CrossRef Link) .

[26] J. Zhang, J. Ma, X. Li and W. Wang, “A Secure and Efficient Remote User Authentication Scheme
for Multi-server Environments Using ECC,” KSII Transactions on Internet and Information
Systems, vol. 8(8), pp. 2930 - 2947, 2014. Article (CrossRef Link) .

Kritsanapong Somsuk is an associate professor at the Department of Computer and
Communication Engineering, Faculty of Technology, Udon Thani Rajabhat University, Udon
Thani, Thailand. He obtained his M.Eng. (Computer Engineering) from Department of
Computer Engineering, Faculty of Engineering, Khon Kaen University, M.Sc. (Computer
Science) from Department of Computer Science, Faculty of Science, Khon Kaen University
and his Ph.D. (Computer Engineering) from Department of Computer Engineering, Faculty
of Engineering, Khon Kaen University. The area of research interests includes computer
security, cryptography and integer factorization algorithms.

https://doi.org/10.1109/ICCI51257.2020.9247766
https://doi.org/10.1002/1520-6440(200012)83%3A12%3c88%3A%3AAID-ECJC10%3e3.0.CO%3B2-5
https://doi.org/10.1016/j.jisa.2020.102534
https://doi.org/10.3837/tiis.2018.09.022
https://doi.org/10.3837/tiis.2014.08.021

