• Title/Summary/Keyword: and MATLAB software

Search Result 397, Processing Time 0.035 seconds

Extracting Reusable Test Cases from Modified MATLAB Simulink Model (변경된 MATLAB Simulink 모델로부터 재사용 가능 테스트 케이스 도출)

  • Park, Geon Gu;Han, Hye Jin;Chung, Ki Hyun;Choi, Kyung Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.6
    • /
    • pp.235-242
    • /
    • 2019
  • This paper proposes a reusable test case extraction technique for modified MATLAB Simulink/Stateflow (SL/SF) model. Creating test cases for complicated SL/SF model like ECU(Electrical Control Unit) of automotive, requires a lot of time and effort. An intuitive way to reduce to create new test cases whenever the model changes, is to reuse some test cases which have been generated for the original model. In this paper, we propose a method to define reusable test cases in SL/SF after defining model behavior and judging model equality by test cases. The proposed technique is evaluated using a commercial automotive controller model.

Development of computational software for flutter reliability analysis of long span bridges

  • Cheng, Jin
    • Wind and Structures
    • /
    • v.15 no.3
    • /
    • pp.209-221
    • /
    • 2012
  • The flutter reliability analysis of long span bridges requires use of a software tool that predicts the uncertainty in a flutter response due to uncertainties in the model formulation and input parameters. Existing flutter analysis numerical codes are not capable of dealing with stochastic uncertainty in the analysis of long span bridges. The goal of the present work is to develop a software tool (FREASB) to enable designers to efficiently and accurately conduct flutter reliability analysis of long span bridges. The FREASB interfaces an open-source Matlab toolbox for structural reliability analysis (FERUM) with a typical deterministic flutter analysis code. The paper presents a brief introduction to the generalized first-order reliability method implemented in FREASB and key steps involved in coupling it with a typical deterministic flutter analysis code. A numerical example concerning flutter reliability analysis of a long span suspension bridge with a main span of 1385 m is presented to demonstrate the application and effectiveness of the methodology and the software.

Software-In-the-Loop based Power Management System Modeling & Simulation for a Liquefied Natural Gas Carrier (SIL 기반 액화천연가스운반선 전력관리시스템의 모델링 및 시뮬레이션)

  • Lee, Kwangkook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1218-1224
    • /
    • 2017
  • With the increasing risk in building liquefied natural gas carriers (LNGC), pre-simulation of various scenarios is required for system integration and safe operation. In particular, the power management system (PMS) is an important part of the LNGC; it works in tight integration with the power control systems to achieve the desired performance and safety. To verify and improve unpredicted errors, we implemented a simulation model of power generation and consumption for testing PMS based on software-in-the-loop (SIL) method. To control and verify the PMS, numeric and physical simulation modeling was undertaken utilizing MATLAB/Simulink. In addition, the simulation model was verified with a load sharing test scenario for a sea trial. This simulation allows shipbuilders to participate in new value-added markets such as commissioning, installation, operation, and maintenance.

Calculating coniferous tree coverage using unmanned aerial vehicle photogrammetry

  • Ivosevic, Bojana;Han, Yong-Gu;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.85-92
    • /
    • 2017
  • Unmanned aerial vehicles (UAVs) are a new and yet constantly developing part of forest inventory studies and vegetation-monitoring fields. Covering large areas, their extensive usage has saved time and money for researchers and conservationists to survey vegetation for various data analyses. Post-processing imaging software has improved the effectiveness of UAVs further by providing 3D models for accurate visualization of the data. We focus on determining the coniferous tree coverage to show the current advantages and disadvantages of the orthorectified 2D and 3D models obtained from the image photogrammetry software, Pix4Dmapper Pro-Non-Commercial. We also examine the methodology used for mapping the study site, additionally investigating the spread of coniferous trees. The collected images were transformed into 2D black and white binary pixel images to calculate the coverage area of coniferous trees in the study site using MATLAB. The research was able to conclude that the 3D model was effective in perceiving the tree composition in the designated site, while the orthorectified 2D map is appropriate for the clear differentiation of coniferous and deciduous trees. In its conclusion, the paper will also be able to show how UAVs could be improved for future usability.

Development of Brake Controller for fixed-wing aircraft using hardware In-the-Loop Simulation

  • Lee, Ki-Chang;Jeon, Jeong-Woo;Hwang, Don-Ha;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.535-538
    • /
    • 2005
  • Today, most fixed-wing aircrafts are equipped with the antiskid brake system. It can modulate braking moments in the wheels optimally, when an aircraft is landing. So it can reduce landing distance and increase safeties. The antiskid brake system for an aircraft are mainly composed of braking moment modulators (hydraulic control valves) and brake control unit. In this paper, a Mark IV type - fully digital - brake controller is studied. For the development of its control algorithms, a 5-DOF (Degree of Freedom) aircraft landing model is composed in the form of matlab/simulink model at first. Then, braking moment control algorithms using wheel decelerations and slips are made. The developed algorithms are tested in software simulations using state-flow toolboxes in matlab/simulink model. Also, a real-time simulation systems are made, which use hydraulic brake systems of a real aircraft, pressure control valves and its controller as hardware components of HIL(Hardware In-the-Loop) simulation. Algorithms tested in software simulations are coded into the controller and the real-time landing simulations are made in very severe road conditions. The real-time simulation results are presented.

  • PDF

Enhanced Undergraduate Software Education Curriculum for Biomedical Engineering: a Proposal for a New Class (개선된 학부 의공학 소프트웨어 교육과정을 위한 새로운 과목의 제안)

  • Park, Hyun-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.4
    • /
    • pp.279-284
    • /
    • 2011
  • Biomedical engineering is a discipline where engineering principles and techniques are applied to the medical field. Biomedical engineering lies between traditional engineering and medicine and is an inter-disciplinary field in its nature. Current Korean undergraduate biomedical engineering curriculum is a simple list of traditional engineering courses combined with basic medical/life science courses. There have been efforts to improve biomedical engineering education to reflect its inter-disciplinary nature. Enhanced software course for biomedical engineering is proposed as a part of effort to overhaul the undergraduate biomedical engineering curriculum. In this newly proposed course, students will learn MATLAB and LabVIEW, which are the most widely used software tools in biomedical engineering.

Design of intelligent estimation of composite fluid-filled shell for three layered active control structure

  • Ghamkhar, Madiha;Hussain, Muzamal;Khadimallah, Mohamed A.;Ayed, Hamdi;Naz, Muhammad Yasin;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.117-126
    • /
    • 2022
  • The vibrational characteristic of three-layered cylindrical shell (CS) submerged in fluid with the ring support has been studied. The inner and outer layer is supposed to construct by isotropic layer. The composition of central layer is of functionally graded material type. Acoustic Wave condition has been utilized to present the impact of fluid. The central layer of cylindrical shell (CS) varies by volume fraction law that has been expressed in terms of polynomial. The main shell frequency equation has been obtained by theory of Love's shell and Rayleigh-Ritz technique. The oscillation of natural frequency has been examined under a variety of end conditions. The dependence of axial model has been executed with the help of characteristic beam function. The natural frequencies (NFs) of functionally graded material (FGM) shell have been observed of cylindrical shell along the shell axial direction. Different physical parameters has been used to examine the vibration characteristics due to the effect of volume fraction law. MATLAB software has been used to get result.

Tag Mis-recognition Detection using RFID Tag Sensitivity in Logistics System (물류 시스템에서 RFID 태그 수신감도를 이용한 태그 오인식 검출)

  • Kim, Youngmin;Kang, Euisun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.8
    • /
    • pp.9-17
    • /
    • 2015
  • One of RFID features is that each RFID tag has a unique identifying code. Logistic System utilizes RFID tag as location tracing, understanding stock or etc. On the other hand, there is a problem of overall lower recognition rate by getting the information of non-mobility tags with no need for reading. To solve this problem, we trace and analyze variation of moving and moveless RFID tag sensitivity by the hour. In analyzed data, we verify that tag sensitivity of mobile RFID is gradually increase while non-mobility tag has same intensity value. In order to detect mobile tag, we generate a function using Matlab with analyzed data and separate moving tags from non-mobility tags by software. As a result, we can confirm that non-mobility tags are detected by software and recognition rate of RFID tag is improved by separating moveless tag.

Modern Software Defined Radar (SDR) Technology and Its Trends

  • Kwag, Young-Kil;Jung, Jung-Soo;Woo, In-Sang;Park, Myeong-Seok
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.321-328
    • /
    • 2014
  • Software defined radar (SDR) is a multi-purpose radar system where most of the hardware processing is performed by software. This paper introduces a concept and technology trends of software defined radar, and addresses the advantages and limitations of the current SDR radar systems. For the advanced SDR concept, the KAU SDR Model (KSM) is presented for the multimode and multiband radar system operating in S-, X-, and K-bands. This SDR consists of a replaceable multiband antenna and RF hardware, common digital processor module with multimode, and open software platform based on MATLAB and LabVIEW. The new concept of the SDR radar can be useful in various applications of the education, traffic monitoring and safety, security, and surveillance depending on the various radar environments.

A Study on the Defection of Arcing Faults in Transmission Lines and Development of Fault Distance Estimation Software using MATLAB (MATLAB을 이용한 송전선로의 아크사고 검출 및 고장거리 추정 소프트웨어 개발에 관한 연구)

  • Kim, Byeong-Cheon;Park, Nam-Ok;Kim, Dong-Su;Kim, Gil-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.4
    • /
    • pp.163-168
    • /
    • 2002
  • This paper present a new verb efficient numerical algorithm for arcing faults detection and fault distance estimation in transmission line. It is based on the fundamental differential equations describing the transients on a transmission line before, during and alter the fault occurrence, and on the application of the "Least Error Squares Technique"for the unknown model parameter estimation. If the arc voltage estimated is a near zero, the fault is without arc, in other words the fault is permanent fault. If the arc voltage estimated has any high value, the faust is identified as an fault, or the transient fault. In permanent faults case, fault distance estimation is necessary. This paper uses the model of the arcing fault in transmission line using ZnO arrestor and resistance to be implemented within EMTP. One purpose of this study is to build a structure for modeling of arcing fault detection and fault distance estimation algorithm using Matlab programming. In this paper, This algorithm has been designed in Graphic user interface(GUI).