• 제목/요약/키워드: anchorage strength

검색결과 198건 처리시간 0.028초

Finite element analysis of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete beams

  • Kim, SangHun;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • 제1권4호
    • /
    • pp.401-416
    • /
    • 2004
  • This paper presents investigation of a three-dimensional (3-D) nonlinear finite element model analysis to examine the behavior of reinforced concrete beams strengthened with Carbon Fiber Reinforced Polymer (CFRP) composites to enhance the flexural capacity and ductility of the beams. Three-dimensional nonlinear finite element models were developed between the internal reinforcement and concrete using a smeared relationship. In addition, bond models between the concrete surface and CFRP composite were developed using a smeared bond for general analyses and a contact bond for sensitivity analyses. The results of the FEA were compared with the experimental data on full-scale members. The results of two finite-element bonding models showed good agreement with those of the experimental tests.

탄소섬유를 사용한 철근콘크리트 전단벽의 휨성능 개선에 관한 실험연구 (An Experimental Study on the Improvement of Flexural Capacity of Reinforced Concrete Shear Wall Using Carbon Fibers)

  • 하기주;서수연;신종학;전찬목;김성수;이상근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.567-572
    • /
    • 2003
  • An experimental work is presented to evaluate the retrofit method for improving the flexural capacity of shear walls. Fives shear wall specimens are designed and retrofitted by using carbon fiber materials such as rod, sheet and plate. Cyclic horizontal loads are applied to the specimens under constant axial load, $0.1f_{ck}A_g$. Test result shows that specimens with additional flexural reinforcement have the increased initial stiffness and deformation capacity. However, the strength is not improved as much as expected. This is because that the flexural reinforcement is pulled out from the foundation at the latter half of cycles. In order to maximize the flexural retrofit, therefore, it is required to study the anchorage behavior of the flexural reinforcement for retrofit.

  • PDF

수가공 및 기계가공 된 나비장 접합부의 성능 비교 (Performance Comparison of Butterfly Joints between Manual Member and Pre-cut Member)

  • 김광철;김준호
    • 한국가구학회지
    • /
    • 제27권3호
    • /
    • pp.165-174
    • /
    • 2016
  • To modularize the joints of Hanok, the bending strengths of butterfly joints between pre-cut and manual member were compared. Structural size joints were manufactured and the length, width and thickness of each tenon were produced with different sizes. The ultimate load of pre-cut members was 2 times higher than that of manual members. Degree of anchorage for the joints on pre-cut member was also superior to that of manual member. By the F-test results, a great influence between ultimate load and sizes of tenon was found. In result of multiple regression analysis, the length and thickness of tenon were showed proportion relationships with the ultimate load, but the width of tenon was showed inverse proportion with the ultimate load. The results of this study can be used to identify the relationships among the major influence factors. Futhermore, it might be used as basic data for modularization the joints of Hanok.

PSC 교량의 3차원 시공 중 해석기법을 위한 쉘요소 개발 (Development of QC Shell Element For Three Dimensional Construction Stage Analysis of PSC Bridge)

  • 변윤주;김현기;송삭;김영회;사차락;김기두
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.557-562
    • /
    • 2007
  • In order to analyze the PSC box-girder bridge by the cantilever construction method, three dimensional analysis method using the PSC shell clement is suggested. The time dependent material functions are based on the ACI and CEB code. The time dependent concrete material properties considered are changes in strength, elastic modulus, creep and shrinkage. For the prestressing tendon, relaxation effects are considered. Anchorage and friction loses during tendon installations are also included. The ACI and CEB material models for creep and elastic modulus are also included.

  • PDF

철근 콘크리트 보-기둥 외측 접합부에 적용된 강섬유의 효과에 관한 실험연구 (An Experimental Study on the Effects of Steel Fibers used at R/C Exterior Joints)

  • 최기봉;오종한;김재
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제2권3호
    • /
    • pp.188-193
    • /
    • 1998
  • An experimental study was performed on the pull-out behavior of 90-deg standard hooks from exterior beam-column connections. The effects of lateral confinement and fiber reinforcement of joint area were investigated. It was concluded ; (1) Substitution of the transverse column (confining) reinforcement with steel fibers at the joint region effectively reduces the extent of cracking in exterior joints caused by pull-out of hooked bars; and (2) The strength and ductility of hooked bars under pull-out forces are positively influenced by substituting the conventional confining reinforcement of exterior joints with steel fibers. Application of steel fibers to exterior joints seems to be an effective technique for improving the anchorage conditions of hooked bars, and also for reducing the congestion of reinforcement in exterior beam-column connections.

  • PDF

기기 기초 시스템의 지렛대 효과 해석 (The Analysis of Prying Action for Equipment Anchor System.)

  • 김강식;유원진;김갑순;서용표
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.83-90
    • /
    • 2002
  • Prying action caused by the eccentric loads within the equipment itself and the anchors can result in a lack of adequate stiffness and strength within the equipment and in additional moment loadings on the anchors. A typical case of prying action often found in power plants is the angle type anchorage system with expansion bolt. Experimental and analytical studies were performed to investigate the relationship between the amplification factors and various geometrical and material factors. It is revealed that the value of the factor is effected by the stiffness of bolt and angle, lateral stiffness of cabinet, and geometrical parameter of anchor system.

  • PDF

Comparative experimental assessment of seismic rehabilitation with CFRP strips and sheets on RC frames

  • Kakaletsis, D.J.
    • Earthquakes and Structures
    • /
    • 제10권3호
    • /
    • pp.613-628
    • /
    • 2016
  • The effectiveness of the use of modern repair schemes for the seismic retrofit of existing RC structures were assessed on a comparative experimental study of carbon fiber-reinforced polymer (CFRP) strips and sheets for the repair of reinforced concrete members of RC frames, damaged because of cyclic loading. Two virgin, single - story, one - bay, 1/3 - scale frame specimens were tested under cyclic horizontal loading, up to a drift level of 4%. Then, virgin specimens, B and F, respectively, were repaired and retested in the same way. One, specimen RB, was repaired with epoxy injections and CFRP strips and one, specimen RF, was repaired with epoxy injections and CFRP sheets. The two specimens are used to examine the differences between the structural behavior of frames repaired using CFRP strips and frames repaired using CFRP sheets. Both qualitative and quantitative conclusions, based on the observed maximum loads, loading and reloading stiffness, hysteretic energy absorption and failure mechanisms are presented and compared. The repaired frames recovered their strength, stiffness and energy dissipated reasonably. The use of CFRP sheets was found more effective than CFRP strips, due to the proper anchorage.

Shear bond failure in composite slabs - a detailed experimental study

  • Chen, Shiming;Shi, Xiaoyu;Qiu, Zihao
    • Steel and Composite Structures
    • /
    • 제11권3호
    • /
    • pp.233-250
    • /
    • 2011
  • An experimental study has been carried out to reveal the shear-bond failure mechanism of composite deck slabs. Thirteen full scale simply supported composite slabs are studied experimentally, with the influence parameters like span length, slab depth, shear span length and end anchorage provided by steel headed studs. A dozen of strain gauges and LVDTs are monitored to capture the strain distribution and variation of the composite slabs. Before the onset of shear-bond slip, the longitudinal shear forces along the span are deduced and found to be proportional to the vertical shear force in terms of the shear-bond strength in the m-k method. The test results are appraised using the current design procedures. Based on the partial shear-bond connection at the ultimate state, an improved method is proposed by introducing two reduction factors to assess the moment resistance of a composite deck slab. The new method has been validated and the results predicted by the revised method agree well with the test results.

Experimental study on lateral behavior of precast wide beam-column joints

  • Kim, Jae Hyun;Jang, Beom Soo;Choi, Seung-Ho;Lee, Yoon Jung;Jeong, Ho Seong;Kim, Kang Su
    • Earthquakes and Structures
    • /
    • 제21권6호
    • /
    • pp.653-667
    • /
    • 2021
  • In this study, cyclic loading tests were conducted on the precast concrete (PC) wide beam (WB)-column joints. Two beam-column joint specimens were fabricated with the arrangement and anchorage details of the reinforcing bars penetrating the beam and column as variables. Through a cyclic loading test, the lateral load-story drift ratio responses, seismic performance characteristics (e.g., ductility, overstrength factor), energy dissipation, strength and stiffness degradations of each specimen were compared and analyzed based on the various indices and the current structural codes (ACI 318-19 and ACI 374.1-05 report). In addition, the shear lag effect was confirmed through the gauge values of the PC beam, and the differences in seismic performance between the specimens were identified on that basis.

폐쇄형 데크플레이트를 사용한 합성슬래브의 전단부착 특성에 관한 연구 (A Shear Bond Chracteristics of Composite Slab with Closed-Shape Deckplate)

  • 주기수;박성무
    • 한국강구조학회 논문집
    • /
    • 제13권5호
    • /
    • pp.557-566
    • /
    • 2001
  • 데크플레이트를 사용한 합성슬래브가 합성거동을 발휘하기 위해서는 데크플레이트와 콘크리트의 부착강도가 확보되어야한다. 합성슬래브에서 전단부착강도는 콘크리트와 데크플레이트의 화학적 부착력, 마찰저항 기계적 상호작용에 의해 발생한다. 또 기계적 상호작용은 길이 방향 전단력 전달 장치인 엠보싱 및 쉬어코넥터, 데크플레이트 형상 등에 의해서 확보되어 진다. 그리고 기계적 상호작용의 효과는 상호 접착부의 수직박리를 구속할 수 있는 데크의 형상과 쉬어코넥터 설치에 따른 단부정착 여부에 따라 크게 달라진다. 그러므로, 본 연구에서는 폐쇄형 데크플레이트에 대하여 기계적 전달장치인 엠보싱과 쉬어 코넥터로 사용되는 스터드 볼트에 대한 전단 보강장치의 부착효과를 Push-off 실험을 통하여 규명하였으며 이들 인자들에 대하여 제안식을 제시하였다. 이는 합성슬래브 설계방법의 기초자료로 이용될 수 있을 것으로 사료된다.

  • PDF