• Title/Summary/Keyword: anchorage strength

Search Result 197, Processing Time 0.028 seconds

Effect of Anchorage on Strength of Precast R/C Beam-Column Joints

  • Kim, Kwangyeon
    • Architectural research
    • /
    • v.2 no.1
    • /
    • pp.55-60
    • /
    • 2000
  • Recently, there is a great demand for precast reinforced concrete (RC) construction methods on the purpose of simplicity in construction. Nishimatsu Construction Company has developed a construction method with precast reinforced concrete members in medium-rise building. In this construction method, how to joint precast members, especially the anchorage of the main bar of beam, is important problem. In this study, the structural performance of exterior joints with precast members was investigated. The parameters of the test specimens are anchorage type of the main bar of beam (U-shape anchorage or anchorage plate) and the ratio of the column axial force to the column strength. Specimens J-3 and J-4 used U-shape anchorage and the ratio of the column axial force of specimen J-4 was higher. On the other hand, specimens J-5 and J-6 used anchorage plate, and the anchorage lengths are 15d and 18d, respectively. Experimental results are summarized as follows; 1) For the joints with beam flexural failure mode, it was found that the maximum strength of specimen with anchorage plate is equal to or larger than that of specimen with conventional U-shaped anchorage if the anchorage length of more than 15d would be ensured, 2) Each specimen shows stable hysteretic curves and there were no notable effects on the hysteretic characteristics and the maximum strength caused by the anchorage method of beam main bar and the difference of column axial stress level.

  • PDF

Influence of steel fiber and reinforcing details on the ultimate bearing strength of the post-tensioning anchorage zone

  • Kim, Jin-Kook;Yang, Jun-Mo;Kwon, Yangsu
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.867-883
    • /
    • 2016
  • In this paper, the effects of steel-fiber and rebar reinforcements on the ultimate bearing strength of the local anchorage zone were investigated based on experiments and comparisons between test results and design-equation predictions (AASHTO 2012, NCHRP 1994). Eighteen specimens were fabricated using the same anchorage device, which is one of the conventional anchorage devices, and two transverse ribs were used to secure an additional bearing area for a compact anchorage-zone design. Eight of the specimens were reinforced with only steel fiber and are of two concrete strengths, while six were reinforced with only rebars for two concrete strengths. The other four specimens were reinforced with both rebars and steel fiber for one concrete strength. The test and the comparisons between the design-equation predictions and the test results showed that the ultimate bearing strength and the section efficiency are highly affected by the reinforcement details and the concrete strength; moreover, the NCHRP equation can be conservatively applied to various local anchorage zones for the prediction of the ultimate bearing strength, whereby conditions such as the consideration of the rib area and the calibration factor are changed.

Anchorage performance tests of SD700 hooked bar and headed bar with a anchorage length of 20db (20db 정착길이를 가지는 SD700 갈고리철근과 확대머리철근의 정착성능 실험)

  • Kim, Ho Young;Sim, Hye Jung
    • Journal of Urban Science
    • /
    • v.7 no.2
    • /
    • pp.21-27
    • /
    • 2018
  • With the increase of the skyscraper center, the development of large-diameter and high-strength reinforcing bars is being carried out to solve the dense reinforcement. In case of the steel reinforced concrete with a small cross section such as beam-column joints, the development length becomes short when straight bars are used. Therefore, it is possible to solve the problem that the development length becomes short by using the bearing strength of the hooked bar and headed bar. In this study, the exterior beam-column joint test of SD700 hooked bar and headed bar with anchorage length of 20db was conducted to extend the development length limitation of hooked bar and headed bar. As a result of the evaluation of the anchorage strength using the design equation by KCI, the average of the [measured value]/[predicted value] ratio was 1.31 for the hooked reinforcing bars. In the case of headed bars, the average of the [measured value]/[predicted value] ratio was 1.12. In addition, in order to compare the anchorage performance of the hooked bar and the headed bar, the measured values were divided by the square root of the compressive strength of the concrete to compare the anchorage strength. Under the same conditions, the anchorage strength of headed bars was 8.5% higher than the hooked bars.

Anchorage Zone Reinforcement for Unbonded Post-Tensioned Circular Anchorage for Single Tendon (비부착식 단일 강연선용 원형 정착구를 적용한 포스트텐션 정착 구역의 보강)

  • Kim, Min Sook;Ro, Kyong Min;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.117-124
    • /
    • 2018
  • In the post-tensioned concrete member, additional reinforcement is required to prevent failure in the anchorage zone. In this study, the details of reinforcement suitable for the anchorage zone of the post-tensioned concrete member using circular anchorage was proposed based on the experimental results. The tests were conducted with the compressive strength of concrete and reinforcement types as variables. The experimental results indicated that the additional reinforcement for the anchorage zone is required when the compressive strength of concrete is less than 17.5 MPa. U-shaped reinforcement shows most effective performance in terms of maximum strength and cracks patterns.

Load Transfer Characteristics of Post-Tensioning Anchorage (포스트텐션용 정착구의 하중전달 특성에 관한 연구)

  • 김민수;김진근;유영섭;이상순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.657-662
    • /
    • 2000
  • This paper presents the results from experimental study that investigated to explore the load transfer characteristics of post-tensioning anchorage zones. The experimental program investigated the primary variables which affect the ultimate load, lateral strains and crack width: concrete compressive strength, details of reinforcement and shape of anchorage. Through this research, it was found that the governing factor of the ultimate load was not compressive cylinder strength but tensile splitting strength. Ultimate load was increased and lateral strain was decreased as the ratio of spiral increased because the lateral expansion of th concrete inside the spiral was restrained by the spiral. Furthermore, the shape of anchorage which can diminish the wedge effect of anchorage and disperse the anchorage force in various depths was more effective.

  • PDF

Effect of anchorage and strength of stirrups on shear behavior of high-strength concrete beams

  • Yang, Jun-Mo;Min, Kyung-Hwan;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • v.41 no.3
    • /
    • pp.407-420
    • /
    • 2012
  • This study investigated possible ways to replace conventional stirrups used on high-strength concrete members with improved reinforcing materials. Headed bar and high-strength steel were chosen to substitute for conventional stirrups, and an experimental comparison between the shear behavior of high-strength concrete large beams reinforced with conventional stirrups and the chosen stirrup substitutes was made. Test results indicated that the headed bar and the high-strength steel led to a significant reserve of shear strength and a good redistribution of shear between stirrups after shear cracking. This is due to the headed bar providing excellent end anchorage and the high-strength steel successfully resisting higher and sudden shear transmission from the concrete to the shear reinforcement. Experimental results presented in this paper were also compared with various prediction models for shear strength of concrete members.

Evaluation of Flexural Performance of Reinforced Concrete Beams Strengthened by Carbon Fiber Sheet Considering End Anchorage Effect (탄소섬유시트로 보강한 RC보의 단부 정착유무에 따른 휨성능 평가)

  • Lee, Chang-Hyun;Eo, Seok-Hong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1165-1171
    • /
    • 2022
  • In this paper, the results of an experimental study were presented by measuring and comparing the flexural strength and deformation on the carbon fiber sheet strength reinforced concrete beam considering end anchorage effect. For this purpose, total six specimens of 100×100×600mm size were prepared and tested according to the KDS 14 20 20. The specimens were categorized in three cases as reference beams without strengthening, beams carbon fiber strengthened but not anchored and beams carbon fiber strengthened also anchored. Experimental results showed that the end anchorage contributed to increase the flexural strength about 42% greater than that of carbon fiber sheets alone, and the number and width of cracks were relatively increased. The results support a considerable effects of end anchorage for carbon fiber strengthened reinforced concrete beams in enhancing the flexural performance. Further studies are needed in durability and long term behavior of carbon fiber sheet strengthened reinforced concrete beams.

Ultimate Strength of Anchorage Zone according to Geometric Parameters of Post-Tensioning Anchorage using a Finite Element Method (유한요소해석을 통한 포스트텐션 정착구 형상 변수의 정착부 극한강도 영향 분석)

  • Kwon, Yangsu;Kim, Jin-Kook;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.317-324
    • /
    • 2015
  • The design of anchorage zone in a post-tensioned member has been started from the evaluation of the ultimate resisting capacity as well as the maximum bursting stress developed, and a lot of design codes including AASHTO and PTI describe their design equations to determine the bearing strength of concrete at the anchorage zone. However, these equations usually give conservative results because their derivation is based on the simple anchorage with a wide bearing plate in the surface without any additional consideration for the load transfer mechanism through transverse ribs on the anchorage. To assess the influence of geometric parameters related to the transverse ribs on the resisting capacity of anchorage block, experiments and analysis are conducted. After verifying the validity of numerical model conducted through correlation studies between experimental and analytical results, parametric studies with changes in the transverse ribs are followed and design recommendations for the anchorage block are suggested from the numerical results obtained.

Anchorage Strength of Headed Bars in Steel Fiber-Reinforced UHPC of 120 and 180 MPa (120, 180 MPa 강섬유 보강 초고성능 콘크리트에 정착된 확대머리철근의 정착강도)

  • Sim, Hye-Jung;Chun, Sung-Chul;Choi, Sokhwan
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.365-373
    • /
    • 2016
  • Ultra-High-Performance Steel Fiber-Reinforced Concrete (SUPER Concrete) exhibits improved compressive and tensile strengths far superior to those of conventional concrete. These characteristics can significantly reduce the cross sectional area of the member and the anchorage strength of a headed bar is expected to be improved. In this study, the anchorage strengths of headed bars with $4d_b$ or $6d_b$ embedment length were evaluated by simulated exterior beam-column joint tests where the headed bars were used as beam bars and the joints were cast of 120 or 180 MPa SUPER Concrete. In all specimens, the actual yield strengths of the headed bars over 600 MPa were developed. Some headed bars were fractured due to the high anchorage capacity in SUPER Concrete. Therefore, the headed bar with only $4d_b$ embedment length in 120 MPa SUPER Concrete can develop a yield strength of 600 MPa which is the highest design yield strength permitted by the KCI design code. The previous model derived from tests with normal concrete and the current design code underestimate the anchorage capacity of the headed bar anchored in SUPER Concrete. Because the previous model and the current design code do not consider the effects of the high tensile strength of SUPER Concrete. From a regression analysis assuming that the anchorage strength is proportional to $(f_{ck})^{\alpha}$, the model for predicting anchorage strength of headed bars in SUPER Concrete is developed. The average and coefficient of variation of the test-to-prediction values are 1.01 and 5%, respectively.

Load Transfer Test of Spirally Reinforced Anchorage Zone for Banded Tendon Group (나선형 원형철근으로 보강된 집중배치 텐던 정착구역에 대한 하중전달시험)

  • Cho, Ah Sir;Kang, Thomas H.K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.59-67
    • /
    • 2017
  • In this study, load transfer tests based on KCI-PS101 were conducted to verify the performance of spiral anchorage zone reinforcement for banded post-tensioning (PT) monostrands. With results, the compressive strength of spiral reinforcement was increased by about 20% than that of specimens with two horizontal steel bars and 8% than that of U-shaped bars. Advanced spiral reinforcement for corner increases compressive strength and can resist the spalling forces or fall-out effect at the corner by shear. The ratio of maximum load to amount of steel of the spiral reinforcement is about twice than that of U-shaped reinforcement. With increase of compressive strength capacity and improvement of constructability, the spiral reinforcement is considered to have advantages of promoting the performance of PT anchorage zone compared to conventional methods.