• Title/Summary/Keyword: anchor

Search Result 1,613, Processing Time 0.026 seconds

Fast and Seamless Handoff Control in Wireless ATM Networks (무선 ATM 네트워크에서 빠르고 매끄러운 핸드오프 제어)

  • Koh, Jae-Young
    • Convergence Security Journal
    • /
    • v.7 no.1
    • /
    • pp.99-106
    • /
    • 2007
  • We propose a distributed anchor Crossover Switches (CX) searching algorithm to play an important role in ensuring fast and seamless handoff control in wireless ATM networks. Within networks that are grouped together, connection management is done for each group by anchor switches, and Permanent Virtual Circuit (PVC) with a narrow bandwidth is assigned between anchors for exchange of information. The proposed algorithm enables quick searching of a targeted CX, makes management of the overall network easier, and reduces system overhead or propagation delay time, thus providing fast and seamless handoff.

  • PDF

Anchor plate design for mechanical anchorage of large diameter reinforcement in nuclear containment buildings (원전 구조물용 대구경 철근의 기계적 정착을 위한 정착판 설계)

  • 이성호;천성철;오보환;박형철;나환선;김상구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.136-139
    • /
    • 2003
  • The re-bar work in the construction of nuclear power plants is difficult, due to the large diameter and the congestion of reinforcements. The mechanical anchorage offers a potential solution for this problem. However, the requirements or the standards for the shape of anchor plate of mechanical anchor has not been clearly established up to now. In this paper, the required performance of the mechanical anchorage for large diameter reinforcements in nuclear power plants are proposed, and the anchor plates are designed through nonlinear finite element analysis. The diameters of anchor plate are determined to be $\sqrt{5}$ times of reinforcement diameter for longitudinal reinforcements and $\sqrt{10}$ for shear reinforcements. The thickness of anchor plates is optimized as 0.3-0.35 times of reinforcement diameter for longitudinal reinforcements and 0.5~0.56 times for shear reinforcements.

  • PDF

Uplift response of circular plates as symmetrical anchor plates in loose sand

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.321-340
    • /
    • 2014
  • Uplift response of symmetrical circular anchor plates has been evaluated in physical model tests and numerical simulation using Plaxis. The behavior of circular anchor plates during uplift test was studied by experimental data and finite element analyses in loose sand. Validation of the analysis model was also carried out with 50 mm, 75 mm and 100 mm diameter of circular plates in loose sand. Agreement between the uplift responses from the physical model tests and finite element modeling using PLAXIS 2D, based on 100 mm computed maximum displacements was excellent for circular anchor plates. Numerical analysis using circular anchor plates was conducted based on hardening soil model (HSM). The research has showed that the finite element results gives higher than the experimental findings in the loose sand.

Composite Strips with Various Anchor Systems for Retrofitting Concrete Beams

  • Yoshitake, Isamu;Yumikura, Keiyu;Mimura, Yoichi;Kim, Yail-J.
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.43-48
    • /
    • 2011
  • This paper presents the performance of anchor systems for reinforced concrete beams retrofitted with carbon fiber reinforced polymer (CFRP) strips. Nine simply-supported beams are tested with various anchor systems such as steel hooks, steel plates with anchor bolts, CFRP anchor plates, and near-surface mounted (NSM) CFRP strip. The effects of these anchors on the behavior of the retrofitted beams are discussed, including load-carrying capacity, failure modes, and ductility characteristics. Test results indicate that end-anchorage is an important parameter when a CFRP-retrofit design is conducted. Mechanical bolts and NSM CRFP anchors are recommended.

Development of Removable-Strand Compression Anchor (압축형 제거 앵커의 개발 및 성능 평가)

  • 김낙경;김성규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.339-346
    • /
    • 2001
  • For temporary excavation support in private land area, the strand of ground anchor should be removed In order to get permission to install anchors. The extractable or removable-strand compression anchor system was developed and evaluated by a series of pull-out load tests. Anchor pull-out tests were performed on seven instrumented full-scale low-pressure grouted anchors installed in weathered soil at the Geotechnical Experimentation Site at Sungkyunkwan University, Four anchors are the compression type anchors and three are the tension anchors. Performance test, creep test, and long term relaxation test were performed and presented. Load distributor was developed in order to distribute large compressive stresses in grout.

  • PDF

A case study on the excavation work using the reinforced ground anchor with geosynthetics in urban area (토목섬유로 보강한 지반앵커를 사용한 도심지 굴착시공사례)

  • Lim, Kang-Ho;Oh, Jung-Hwan;Kim, Tae-Seob;Choi, Sung-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.902-911
    • /
    • 2009
  • There appeared many difficulties due to various construction factors during the recent construction adjacent to the housing for the aging. In particular, the study is going to summarize and overview the selection procedure and construction details of the excavation engineering of this site, which could ensure workability and economic efficiency through the construction of a shorter anchor than the length of the existing anchor with a minimal marginal space without invading the nearby private land.

  • PDF

Study on CGP-Anchor of Open-Cuts in Abandoned Coal Fill Deposit (폐탄매립층의 흙막이공사에서 CGP-앵커 시공사례연구)

  • 천병식;양형칠
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.416-423
    • /
    • 2001
  • The object of this study is to determine the application of friction and ground stress type CGP(Compaction Grouting Pack)-anchor in retaining wall construction on the soft ground by executing in the fill deposit with abandoned coal. In this study the effect of CGP-anchors as retaining wall anchor on the soft ground anchor was evaluated through measuring displacement according to tensile strength by acting tensile strength after equipping CGP-anchors. From the field tests results, CGP-anchor was determined to be considerably effective as retaining wall anchor on the soft ground by showing that the maximum displacement was 60mm and the elastic displacement was within 50mm by 53ton tensile strength.

  • PDF

Model Test for the Development of Installing Manipulator of Concrete Pile Anchor (콘크리트 파일앵커의 설치 매니퓨레이터의 개발을 위한 모형실험에 관한 연구)

  • 윤길수;김호상
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.47-52
    • /
    • 2004
  • Greater holding force of an anchor is required for maintaining the position of a larger floating structure. According to the series of model tests of pile anchors with movable fluke, the square type pile anchor, with fluke, showed more than 6 times of the uplift pulling force, compared to the same type pile anchor, without fluke. This uplift force is 100 times its weight. When the water depth is more than 40m, It is difficult to install the pile anchor. For a convenient installation method, a type of manipulator is proposed for the separation of a weight and buoyancy controller, using TRIZ.

Square plates as symmetrical anchor plates under uplift test in loose sand

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.593-612
    • /
    • 2014
  • The uplift response of symmetrical square anchor plates has been evaluated in physical model tests and numerical simulations using Plaxis. The behavior of square anchor plates during uplift test was studied by experimental data and finite element analyses in loose sand. Validation of the analysis model was also carried out with 50 mm, 75 mm and 100 mm Length square plates in loose sand. Agreement between the uplift responses from the physical model tests and finite element modeling using PLAXIS 2D, based on 100 mm computed maximum displacements was excellent for square anchor plates. Numerical analysis using square anchor plates was conducted based on the hardening soil model (HSM). The research has shown that the finite element results are higher than the experimental findings in loose sand.