• Title/Summary/Keyword: analytical design

Search Result 2,970, Processing Time 0.031 seconds

Fiber-optic biosensor for the detection of organophosphorus compounds in a contaminated water (Part I. : Design and development) (오염수 내의 유기인 화합물의 측정을 위한 광섬유 바이오센서 (제 1 부 : 장치 설계 및 개발 ))

  • Choi, Jeong-Woo;Min, Jun-Hong;Lee, Won-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.50-56
    • /
    • 1994
  • Fiber-optic biosensor for the detection of organophosphorus compounds in a contaminated water was developed, which was the component of pesticides and agricultural agent. The detection principle of designed sensor was the pH variance induced by a reaction of acetylcholinesterase enzyme inhibited by organophosphorus compounds. The pH variance was detected by the optical system to measure the organophosphorus compounds. Litmus was selected as the pH-sensitive dye suitable to the enzyme reaction and a light source to be detected by the optical system. The enzyme entrapped in Ca-alginate gel was immobilized at the inner wall to maintain the high activity of enzyme and to be reused for a long period. The optical fiber was used to miniaturize and control remotely the sensor system. The He-Ne laser with 632 nm was selected as the light source to prevent light intensity fluctuation by the product. Cheap plastic optical fibers were used as the transmission part of the light and the phototransistor was used as the reception part of light based on the wavelength of He-Ne laser. The proposed fiber-optic biosensor has the linear analytical range of 0 ppm-1.5 ppm with response time of 5 minutes.

  • PDF

Analytical Evaluation of Influent Depending on the Occurrence of Rainfall by Case Study of Wastewater Treatment Facility (하수처리시설 사례 별 강우발생 유무에 따른 유입수 분석 평가)

  • Choi, Langkyu;Chung, Jin Do
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.3
    • /
    • pp.35-49
    • /
    • 2019
  • Currently in 2018, Korea has over 600 operating sewage disposal facilities. The law requires a sewage treatment plant to treat 500 tons or more of water per day, and a small-decentralized sewage treatment facility in a community to treat 50 tons or more to less than 500 tons of water per day. However, most facilities fulfill neither the quantity nor the quality requirements from the original design for such reasons as inflow of rainwater and ground water due to deterioration of pipelines and unauthorized input of wastewater in the pipelines. The research has selected 2 representative cases among the technical diagnosif sewage pipelines in many regions within the country to use it as the baseline of: hourly flowrate and BOD water quality analysis in both clear and rainy days, proper plant operation through inflow rate and ratio calculation, and diagnostic evaluation for deterioration of the pipelines and their accessary structures. This also suggests facilities that treats 500 tons or more of inflow per day to sample and analyze the water hourly for 24 hours once a week in both clear weather and rainy weather considering the influence of rainfall on a regular basis.

Target Identification for Metabolic Engineering: Incorporation of Metabolome and Transcriptome Strategies to Better Understand Metabolic Fluxes

  • Lindley, Nic
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2004.06a
    • /
    • pp.60-61
    • /
    • 2004
  • Metabolic engineering is now a well established discipline, used extensively to determine and execute rational strategies of strain development to improve the performance of micro-organisms employed in industrial fermentations. The basic principle of this approach is that performance of the microbial catalyst should be adequately characterised metabolically so as to clearlyidentify the metabolic network constraints, thereby identifying the most probable targets for genetic engineering and the extent to which improvements can be realistically achieved. In order to harness correctly this potential, it is clear that the physiological analysis of each strain studied needs to be undertaken under conditions as close as possible to the physico-chemical environment in which the strain evolves within the full-scale process. Furthermore, this analysis needs to be undertaken throughoutthe entire fermentation so as to take into account the changing environment in an essentially dynamic situation in which metabolic stress is accentuated by the microbial activity itself, leading to increasingly important stress response at a metabolic level. All too often these industrial fermentation constraints are overlooked, leading to identification of targets whose validity within the industrial context is at best limited. Thus the conceptual error is linked to experimental design rather than inadequate methodology. New tools are becoming available which open up new possibilities in metabolic engineering and the characterisation of complex metabolic networks. Traditionally metabolic analysis was targeted towards pre-identified genes and their corresponding enzymatic activities within pre-selected metabolic pathways. Those pathways not included at the onset were intrinsically removed from the network giving a fundamentally localised vision of pathway functionality. New tools from genome research extend this reductive approach so as to include the global characteristics of a given biological model which can now be seen as an integrated functional unit rather than a specific sub-group of biochemical reactions, thereby facilitating the resolution of complexnetworks whose exact composition cannot be estimated at the onset. This global overview of whole cell physiology enables new targets to be identified which would classically not have been suspected previously. Of course, as with all powerful analytical tools, post-genomic technology must be used carefully so as to avoid expensive errors. This is not always the case and the data obtained need to be examined carefully to avoid embarking on the study of artefacts due to poor understanding of cell biology. These basic developments and the underlying concepts will be illustrated with examples from the author's laboratory concerning the industrial production of commodity chemicals using a number of industrially important bacteria. The different levels of possibleinvestigation and the extent to which the data can be extrapolated will be highlighted together with the extent to which realistic yield targets can be attained. Genetic engineering strategies and the performance of the resulting strains will be examined within the context of the prevailing experimental conditions encountered in the industrial fermentor. Examples used will include the production of amino acids, vitamins and polysaccharides. In each case metabolic constraints can be identified and the extent to which performance can be enhanced predicted

  • PDF

Development of Buckling Restrained Brace Laterally Supported by Semicircular Springs (반원형 스프링으로 횡지지된 건식형 좌굴방지가새의 개발)

  • Park, Keum Sung;Lee, Sang Sup;Hong, Sung Yub;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.549-558
    • /
    • 2014
  • Buckling restrained braces(BRBs) developed as a seismic protection element, hysteretic damper, have been investigated in America and Japan mainly. BRBs are composed of a steel core and concrete-filled steel casing. It is one of the major causes of drop in productivity to fill the steel casing with concrete. To improve this problem, the BRB is introduced in which the steel core is restrained with a pair of semicircular springs. In this paper, the numerical and analytical investigation about the desirable configuration for a semicircular spring is presented. Firstly, the stiffness and strength of semicircular spring is determined theoretically to buckle into a very high-order modes. Then, the required stiffness and strength are calculated under the practical design conditions and considered as reference values to find a proper configuration. The material strength and thickness of semicircular spring are chose from the finite element analysis for 5 semicircular springs with varying height. Finally, the nonlinear buckling analysis of BRB with proper semicircular springs shows that the bucking strength of the whole BRB is very similar to the strength of steel core with length between semicircular springs.

Thermal Bridge and Heat Transfer Analysis for Each Part in Residential Building According to Construction of Wood-based Finishing Material (목질 마감재 구성에 따른 주거용 건축물 부위별 열교 및 전열성능 분석)

  • Seo, Jungki;Jeong, Su-Gwang;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.343-359
    • /
    • 2017
  • Many researches and policies have been carried out for saving energy in buildings. However, there are a few studies of thermal characteristics of wood-based materials that have been widely used as structural materials and finishing materials in buildings. In this study, thermal bridging areas were found to investigate thermal performance of residential building using non wood-based materials and wood-based materials. And heat transfer analysis of 16 case studies according to composition of structural materials and finishing materials was conducted. Also in this experiment, Physibel Trisco was used as the heat transfer analysis simulation tool, which conforms to the calculation method of ISO 10211. Analytical modeling was also carried out according to the ISO 10211, and the boundary temperature conditions were set at room temperature $20^{\circ}C$ and outdoor temperature $-11.3^{\circ}C$ (Seoul standard) according to the energy saving design standard in South Korea. Applied structures are classified according to the cases of concrete structure with non wood-based finishing materials, concrete structure with wood-based finishing materials and wood structure. Analyzed building elements were divided into a wall, a roof, an interlayer floor and a bottom floor. As a result, it can be confirmed that the thermal bridge of the concrete structure and wood structure were caused by the geometrical and material causes. In addition, the structural thermal bridge was caused in the discontinuity of the insulation in the concrete structure. Also it was confirmed that the linear heat transfer coefficient of the wall decreases when the wood-based materials are applied to the concrete structure.

Effect of Various Parameters on Stress Distribution around Holes in Mechanically Fastened Composite Laminates (기계적으로 체결된 복합재료 평판에서 다양한 인자의 영향에 따른 원공 주위의 응력분포)

  • Choi Jae-Min;Chun Heoung-Jae;Byun Joon-Hyung
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.9-18
    • /
    • 2005
  • With the wide applications of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joints have become a very important research area because the joints are often the weakest areas in composite structures. This paper presents an analytical study of the stress distributions in mechanically single-fastened and multi-fastened composite laminates. The finite element models which treat the pin and hole contact problem using a contact stress analysis are described. A dimensionless stress concentration factor is used to compare the stress distributions in composite laminates quantitatively In the case of single-pin loaded composite laminate, the effects of stacking sequence, the ratio of a hole diameter and the width of a laminate (W/D ratio), the ratio of hole diameter and distance from edge to hole (E/D ratio), friction coefficient and clamping force are considered. In the case of multi-pin loaded composite laminate, the influence of the number of pins, pitch distance, number of rows, row spacing and hole pattern are considered. The results show that P/D ratio and E/D ratio affect more on stress distributions near the hole boundary than the other factors. In the case of multi-pin loaded composite laminate, the stress concentration in the double column case is better than the other cases of multi-pin loaded composite laminate.

Numerical Study on the Behavior of Fully Grouted Rock Bolts with Different Boundary Conditions (경계조건의 변화에 따른 전면접착형 록볼트 거동의 수치해석적 연구)

  • Lee, Youn-Kyou;Song, Won-Kyong;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.267-276
    • /
    • 2010
  • In modern rock engineering practice, fully grouted rock bolting is actively employed as a major supporting system, so that understanding the behavior of fully grouted rock bolts is essential for the precise design of rock bolting. Despite its importance, the supporting mechanism of rock bolts has not been fully understood yet. Since most of existing analytical models for rock bolts were developed by drastically simplifying their boundary conditions, they are not suitable for the bolts of in-situ condition. In this study, 3-D elastic FE analysis of fully grouted rock bolts has been conducted to provide insight into the supporting mechanism of the bolt. The distribution of shear and axial stresses along the bolt are investigated with the consideration of different boundary conditions including three different displacement boundary conditions at the bolt head, the presence of intersecting rock joints, and the variation of elastic modulus of adjacent rock. The numerical result reveals that installation of the faceplate at the bolt head plays an important role in mobilizing the supporting action and enhancing the supporting capabilities of the fully grouted rock bolts.

FE Analysis on the Structural Behavior of the Single-Leaf Blast-Resistant Door According to Design Parameter Variation (설계변수에 따른 편개형 방폭문의 구조거동 유한요소해석)

  • Shin, Hyun-Seop;Kim, Won-Woo;Park, Gi-Joon;Lee, Nam-Kon;Moon, Jae-Heum;Kim, Sung-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.259-272
    • /
    • 2019
  • Steel-concrete single-leaf blast-resistant doors are protective structures consisting of a steel box and reinforced concrete slab. By the domestic blast-resistant doors, the structure is not designed efficiently because few studies have examined the effects of variables, such as the blast pressure, rebar ratio, and steel plate thickness on the structural behavior. In this study, the structural behavior of the doors was analyzed using the FE method, and the support rotation and ductility ratio used to classify the structural performance were reviewed. The results showed that the deflection changes more significantly when the plate thickness increases than when the rebar spacing is a variable. This is because the strain energy absorbed by the door is reduced considerably when the plate thickness increases, and as a result, the maximum deflection becomes smaller. According to a comparison of the calculated values of the support rotation and the ductility ratio, the structural performance of the doors could be classified based on the support rotation of one degree and ductility ratio of three. On the other hand, more explosion tests and analytical studies will be needed to classify the damage level.

Studies on the Folic Acid and Methionine Requirements for Young Broiler Chicks Including New Analytical Methods for Folic Acid in Poultry Feedstuffs (가금 원료사료의 새로운 엽산 분석방법과 어린 육계의 엽산과 메티오닌의 요구량에 관한 연구)

  • 류경선;박강희;신원집
    • Korean Journal of Poultry Science
    • /
    • v.22 no.3
    • /
    • pp.179-188
    • /
    • 1995
  • In Experiment 1, microbial assays were conducted on 57 feed ingredient samples to determine the content of total folic acid using Lactobacillus casei(ATCC 7469). Folic acid contents of feed samples pretreated with conjugase, ${\alpha}$-amylase, and a mixture of protease(Pronase)were corn, 09${\pm}$1.18($\pi$g${\pm}$SD); fish meal, 23.05${\pm}$1.27; milo, 29.34${\pm}$0.55; bakery meal, 25.80${\pm}$6.93; meat and bone meal, 56.76${\pm}$4.97; wheat middlings, 85.14${\pm}$2.56; and soybean meal, 193.97${\pm}$3.98. Experiments 2 and 3 were conducted to determine the effects of dietary supplemental folic acid and methionine on the performance of starting broiler chicks for 18 days. Four levels of dietary folic acid(0.24. 0.54,1.14 and 2.34mg/kg) and four levels of dietary methionine(0.45, 0.53,0.61, and 0.69%) were fed in a factorial design. The basal diet was based on corn, isolated soybean protein, meat and bone meal, and fish meal. It contained adequate amounts of all nutrients except methionine and folic acid in both experiments. Increased growth rate was observed in chicks fed the basal diet supplemented with either folic acid or methionine. Total dietary folic acid and methionine plus cysteine requirements for optimum growth were estimated to be 1.80 mg/kg and 0.89% in Experiment 2, and 1.47 mg/kg and 0.91% in Experiment 3, respectively. There were interactions between dietary folic acid and methionine on weight gain in both experiments. Chicks fed diets containing 2.34 mg folic acid /kg tended to display slow growth rate in both experiments. There was a significant linear feed conversion response to folic acid in Experiment 2, and a significant quadratic feed conversion resuonse to methionine in Experiment 3. There were both linear and quadratic liver folic acid responses to dietary folic acid in both experiments. There was no indication that dietary methionine had any effect on liver folic acid content. The incidence of tibial dyschondroplasia increased with increasing supplemental methionine, but were no significant differences detected at 5% level.

  • PDF

Evaluation of Privately Owned Public Spaces within Detached Housing Areas in Pangyo City - Focusing on the Mixed use Housing Areas (가구내부 공유외부공지의 조성실태에 관한 연구 - 서판교 점포주택지를 중심으로)

  • Park, Kyung Seo;Kang, Jun Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.157-167
    • /
    • 2016
  • Detached residential housing areas are located in the west part of Pangyo City. Seven areas of them are designated for the displaced residents from their original homes by the city development, in which commercial use on the first floor is permitted. The District Plan for the areas were establishes, and one of its main goals is to secure privately owned public spaces (POPS). This research conducted a post enumeration survey on the POPS on the blocks in the seven areas, which blocks contain inner corridors between two rows of housing units. Analytical review of the survey result reveals that (1) POPS facing roads are mainly being used as parking lots or expansion-spaces for the commercial use on the first floor, (2) inner POPS forming corridors are being neglected and otherwise being used as storage areas or outdoor sub-kitchen spaces, and (3) no consideration has been taken for the continuity of the sloped corridors. Regardless of a few good practices in terms of air circulation and lighting, the POPS in the blocks prove to be limited in following the plan's original design intentions and principles.