• Title/Summary/Keyword: analysis parameters

Search Result 18,206, Processing Time 0.039 seconds

Identification of joint dynamics of mechanical structures using condensed F.E.M. model and experimental modal analysis (축약된 유한요소 모델과 실험적 모우드 해석을 이용한 기계구조물의 연결부 동특성 규명)

  • 최병욱;박병호;김광준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.426-439
    • /
    • 1988
  • Dynamic properties such as stiffness and damping of mechanical joints are essential for the accurate prediction of the dynamic behaviors of the system and subsequent improvement of the design. So far several techniques, analytical, experimental, or both have been developed. A technique using condensed F.E.M. model and Experimental Modal Analysis is presented to identify the joint structural parameters. First, modal parameters of structure are measured by certain complex frequency obtained from experiment to match with the order of the Experimental Modal Analysis model. Finally by equating the modal parameters obtained from experiment with those of the condensed system, the unknown joint structural parameters can be identified. A simulation study is conducted to investigate the accuracy of technique. The experiments are performed with ball bearings in a rotor bearing system.

Nonlinear Dynamic Analysis of Cantilever Tube Conveying Fluid with System Identification

  • Lim, Jae-Hoon;Jung, Goo-Choong;Park, Yeon-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1994-2003
    • /
    • 2003
  • The vibration of a flexible cantilever tube with nonlinear constraints when it is subjected to flow internally with fluids is examined by experimental and theoretical analysis. These kinds of studies have been performed to find the existence of chaotic motion. In this paper, the important parameters of the system leading to such a chaotic motion such as Young's modulus and the coefficient of viscoelastic damping are discussed. The parameters are investigated by means of system identification so that comparisons are made between numerical analysis using the design parameters and the experimental results. The chaotic region led by several period-doubling bifurcations beyond the Hopf bifurcation is also re-established with phase portraits, bifurcation diagram and Lyapunov exponent so that one can define optimal parameters for system design.

Prediction of product parameters of fly ash cement bricks using two dimensional orthogonal polynomials in the regression analysis

  • Chakraverty, S.;Saini, Himani;Panigrahi, S.K.
    • Computers and Concrete
    • /
    • v.5 no.5
    • /
    • pp.449-459
    • /
    • 2008
  • This paper focuses on the application of two dimensional orthogonal polynomials in the regression analysis for the relationship of product parameters viz. compressive strength, bulk density and water absorption of fly ash cement bricks with other process parameters such as percentages of fly ash, sand and cement. The method has been validated by linear and non-linear two parameter regression models. The use of two dimensional orthogonal system makes the analysis computationally efficient, simple and straight forward. Corresponding co-efficient of determination and F-test are also reported to show the efficacy and reliability of the relationships. By applying the evolved relationships, the product parameters of fly ash cement bricks may be approximated for the use in construction sectors.

A foundation treatment optimization approach study in hydraulic engineering

  • Zhang, Tianye;Liu, Shixia
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.215-225
    • /
    • 2018
  • To reach a better foundation treatment project, an optimized analysis of composite foundation was studied in the field of hydraulic engineering. Its unique characteristics in hydraulic engineering were concluded. And, the overall and detailed analysis of the composite foundation model established was carried out. The index parameters of the vertical reinforced rigid pile composite foundation were formulated. Further, considering the unique role of cushion in hydraulic engineering, its penetration and regularity were analyzed. Then, comparative and optimized analyses of cushion multistage physical dimensions and multistage material characteristics were established. The parameters of the piles distance were optimized and the multilevel scientific and reasonable parameters information was obtained. Based on the information of these parameters, the practical application was verified. It effectively supported the effective application of vertical reinforcement rigid pile composite foundation in hydraulic engineering. The service mechanism of composite foundation was fully analyzed.

The Optimal Selection of Cutting Parameters in Turning Operation

  • Hong, Min-Sung;Lian, Zhe-Man
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.242-248
    • /
    • 2000
  • This paper has focused on the optimization of the cutting parameters for turning operation based on the Taguchi method. Four cutting parameters, namely, cutting speed, feed, depth of cut and nose radius are optimized with consideration of the surface roughness. The design and analysis of experiments are conducted to study the performance characteristic. The effects of these parameters on the surface roughness have been investigated using the signal-to-noise (S/N) ratio, analysis of variance (ANOVA). The experiments have been peformed using coated tungsten carbide inserts without any cutting fluid. Experimental results illustrate the effectiveness of this approach.

  • PDF

The two-dimensional heat transfer analysis in a fin assembly (Fin Assembly에서의 2차원 열전달 해석)

  • 서정일;조진호;강희영
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.36-45
    • /
    • 1984
  • The conventional heat transfer analysis methods based on the one-dimensional theory are not adequate to be applied for the purpose of finned surface design because the two-dimensional effects in fact are induced within the supporting wall by the presence of the finnes. In this study, the two-dimensional heat transfer of a straight fin assembly is analyzed by using the integral method. It is shown that all the effects of the system parameters i.e., the heat transfer parameters and geometrical parameters, on both the total heat transfer rate and the surface temperature effectiveness can be seen from the present analysis. The optimum combinations of these parameters for the design of finned surfaces may be estimated.

  • PDF

Analysis of Ventilation Rates in Residential Buildings using a Multizone Network Model (멀티존 네트워크 모델을 이용한 주거용 건물의 환기량 분석)

  • Cha, Ji-Hyoung;Park, Cheol-Hun;Kim, Yeong-Ha;Baek, Chang-In;Han, Hwa-Taek
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.45-50
    • /
    • 2005
  • The supply outdoor airflow rates are calculated and analyzed using a multizone network model in a high-rise residential apartment. The system parameters include parameters related to weather conditions, building conditions, operation conditions, and facility conditions. Simulations are conducted according to the method of design of experiments and analysis of variance is conducted to investigate the effects of parameters on ventilation rate. A correlation equation is derived to predict ventilation rates of the building depending on the various parameters.

  • PDF

Nonlinear Dynamic Analysis of a Cantilever Tube Conveying Fluid with System Identification (시스템 규명을 통한 외팔 송수관의 비선형 동적 거동 해석)

  • 임재훈;정구충;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.495-500
    • /
    • 2003
  • The vibration of a flexible cantilever tube with nonlinear constraints when it is subjected to flow internally with fluids is examined by experiment and theoretical analysis. These kind of studies have often been performed that finds the existence of chaotic motion. In this paper, the important parameters of the system leading to such a chaotic motion such as Young's modulus and coefficient of viscoelasticity in tube material are discussed. The parameters are investigated by means of a system identification so that comparisons are made between numerical analysis using the parameters of a handbook and the experimental results. The chaotic region led by several period-doubling bifurcations beyond the Hopf bifurcation is also re-established with phase portraits and bifurcation diagram so that one can define optimal parameters for system design.

  • PDF

Modal Parameter Estimation of a Steel Frame Structure by Using Free Vibration Displacement Data (자유진동 변위데이터를 이용한 철골구조물의 모드인자 파악)

  • Ham, Hee-Jung
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.19-25
    • /
    • 2009
  • The proper orthogonal decomposition (POD) analysis of vibration of a steel frame structure is performed to extract modal parameters. The theoretical background of the POD method is introduced briefly, and this technique is further applied to free vibration displacements of one bay-two story steel frame structure to extract the modal parameters. From the POD analysis of the steel frame structure, it is found that important modal parameters such as true mode shapes, modal kinematic energy, natural frequencies, and damping ratios can be obtained for the building efficiently and in detail. Therefore, it is concluded that the POD method could be one of the useful techniques in analysis of vibration of structures.

  • PDF

Volumetric CT Texture Analysis of Intrahepatic Mass-Forming Cholangiocarcinoma for the Prediction of Postoperative Outcomes: Fully Automatic Tumor Segmentation Versus Semi-Automatic Segmentation

  • Sungeun Park;Jeong Min Lee;Junghoan Park;Jihyuk Lee;Jae Seok Bae;Jae Hyun Kim;Ijin Joo
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1797-1808
    • /
    • 2021
  • Objective: To determine whether volumetric CT texture analysis (CTTA) using fully automatic tumor segmentation can help predict recurrence-free survival (RFS) in patients with intrahepatic mass-forming cholangiocarcinomas (IMCCs) after surgical resection. Materials and Methods: This retrospective study analyzed the preoperative CT scans of 89 patients with IMCCs (64 male; 25 female; mean age, 62.1 years; range, 38-78 years) who underwent surgical resection between January 2005 and December 2016. Volumetric CTTA of IMCCs was performed in late arterial phase images using both fully automatic and semi-automatic liver tumor segmentation techniques. The time spent on segmentation and texture analysis was compared, and the first-order and second-order texture parameters and shape features were extracted. The reliability of CTTA parameters between the techniques was evaluated using intraclass correlation coefficients (ICCs). Intra- and interobserver reproducibility of volumetric CTTAs were also obtained using ICCs. Cox proportional hazard regression were used to predict RFS using CTTA parameters and clinicopathological parameters. Results: The time spent on fully automatic tumor segmentation and CTTA was significantly shorter than that for semi-automatic segmentation: mean ± standard deviation of 1 minutes 37 seconds ± 50 seconds vs. 10 minutes 48 seconds ± 13 minutes 44 seconds (p < 0.001). ICCs of the texture features between the two techniques ranged from 0.215 to 0.980. ICCs for the intraobserver and interobserver reproducibility using fully automatic segmentation were 0.601-0.997 and 0.177-0.984, respectively. Multivariable analysis identified lower first-order mean (hazard ratio [HR], 0.982; p = 0.010), larger pathologic tumor size (HR, 1.171; p < 0.001), and positive lymph node involvement (HR, 2.193; p = 0.014) as significant parameters for shorter RFS using fully automatic segmentation. Conclusion: Volumetric CTTA parameters obtained using fully automatic segmentation could be utilized as prognostic markers in patients with IMCC, with comparable reproducibility in significantly less time compared with semi-automatic segmentation.