• Title/Summary/Keyword: analysis of propagation environments

Search Result 104, Processing Time 0.033 seconds

An Enhanced Approach for a Prediction Method of the Propagation Characteristics in Korean Environments at 781 MHz

  • Jung, Myoung-Won;Kim, Jong Ho;Choi, Jae Ick;Kim, Joo Seok;Kim, Kyungseok;Pack, Jeong-Ki
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.911-921
    • /
    • 2012
  • In high-speed wireless communications, an analysis of the propagation characteristics is an important process. Information on the propagation characteristics suitable for each environment significantly helps in the design of mobile communications. This paper presents the analysis results of radio propagation characteristics in outdoor environments for a new mobile wireless system at 781 MHz. To avoid the interference of Korean DTV broadcasting, we measure the channel characteristics in urban, suburban, and rural areas on Jeju Island, Republic of Korea, using a channel sounder and $4{\times}4$ antenna. The path loss (PL) measurement results differ from those of existing propagation models by more than 10 dB. To analyze the frequency characteristics for Korean propagation environments, we derive various propagation characteristic parameters: PL, delay spread, angular spread, and K-factor. Finally, we verify the validity of the measurement results by comparing them with the actual measurement results and 3D ray-tracing simulation results.

Analysis of Propagation Characteristics by Statistical Analysis in Domestic Atmospheric Environments (국내 대기 환경의 통계적 특성 분석을 통한 전파 특성 분석)

  • Choi, Moon-Young;Lee, Gil-Jae;Kim, Hyun-Soo;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.698-705
    • /
    • 2008
  • When electromagnetic waves propagate through atmosphere, waves are affected by various factors. Atmosphere normally consists of different molecular species, water vapours, rain, fog, snow and small suspended particles called aerosols. The distributions of atmosphere molecules, water vapours, rain rate, snowfall and aerosol are dependent on geometrical regions or environment. In order to predict propagation characteristics in atmospheric environment, statistical analysis of the relevant parameters such as temperature, humidity, atmospheric pressure, wind speed, areosol and rainfall is crucial. In this paper, we performed a long-term statistical analysis for the atmospheric parameters in domestic environments and analyzed the propagation characteristics through atmosphere based on that.

Prediction and Analysis of the Propagation Characteristics in Indoor Environments (실내 환경의 전파특성 예측과 분석)

  • 손호경;김성진김채영
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.169-172
    • /
    • 1998
  • A 3D-ray tracing using triangular ray tubes for predicting propagation in indoor environments is presented. Employed ray tracing scheme needs no reception sphere often suffered from how to assign the correct radius as a touching ray on the receiver. To verify the developed codes path loss for a rectangular corridor has been computed, measured, and compared with those by image methods, all shows good agreement to each other. Discussions are made on the path loss fluctuations along the distance in a rectangular corridor having a conducting knife.

  • PDF

Measurement and Analysis of Propagation for the Digital Radio Village Broadcasting System (디지털 마을방송 시스템 구축을 위한 전파 측정 및 분석)

  • Choi, Da-Som;Kang, Young-Heung
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.568-573
    • /
    • 2016
  • Since the existing analog village broadcasting system has some technical problems in applying and degradations in performance due to its old equipments, it had been required to be changed to a digital system and to develop the standardization from now. Therefore, we have analyzed the service coverage in various environments in order to construct an effective digital wireless village broadcasting system. Also, a precise prediction of field strength should be set up in various propagation environments to design a digital radio stations with reliable transmit power. Using these results the received power and the propagation characteristics in various environments can be predicted to establish a standard and the testing service will be deployed in the near future.

FDTD Analysis of Electromagnetic Wave Propagation in an Inhomogeneous Ionosphere under Arbitrary-Direction Geomagnetic Field

  • Kweon, Jun-Ho;Park, Min-Seok;Cho, Jeahoon;Jung, Kyung-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.212-214
    • /
    • 2018
  • The finite-difference time-domain (FDTD) model was developed to analyze electromagnetic (EM) wave propagation in an inhomogeneous ionosphere. The EM analysis of ionosphere is complicated, owing to various propagation environments that are significantly influenced by plasma frequency, cyclotron frequency, and collision frequency. Based on the simple auxiliary differential equation (ADE) technique, we present an accurate FDTD algorithm suitable for the EM analysis of complex phenomena in the ionosphere under arbitrary-direction geomagnetic field. Numerical examples are used to validate our FDTD model in terms of the reflection coefficient of a single magnetized plasma slab. Based on the FDTD formulation developed here, we investigate EM wave propagation characteristics in the ionosphere using realistic ionospheric data for South Korea.

Impacts of Radio Propagation Model on Mobile Ad-hoc Network (MANET) Performance in Group Mobility Environments

  • Yeo, In-ho;Yang, Hyo-sik;Rhee, JongMyung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.3
    • /
    • pp.62-72
    • /
    • 2010
  • As the applications for Mobile Ad-hoc NETworks (MANETs) have varied, performance analysis has become one of the main research areas. They commonly offer only simple radio propagation models that neglect obstacles of a propagation environment. The radio wave propagation model has a strong impact on the results of the simulation run. In this paper we present the new experimental results of the impacts of the various propagation models on MANETs' performance. Intensive simulations have been presented using the group mobility which models typical ad-hoc situations such as military movements or disaster recovery activities under the supervision of a group leader. Comparisons of conventional simple models with more complicated models, i.e., shadowing, Raleigh, and Ricean models, show that, in spite of the models' popularity, the free space and two-ray ground models are too optimistic in describing real ad-hoc group mobility situations.

  • PDF

Development of a 3D Micro-cell Simulator for Radio Wave Propagation Analysis in Indoor Environments (실내 환경에서 전파(傳播)특성 분석을 위한 마이크로 셀용 3D 시뮬레이터 개발)

  • Lim, Joong-Soo;Son, Dong-Cheul;Chae, Gyoo-Soo
    • Journal of Digital Convergence
    • /
    • v.11 no.1
    • /
    • pp.283-288
    • /
    • 2013
  • In this study, we introduce a 3D micro-cell simulator for radio wave propagation analysis in indoor environments. Previous studies treat only the path loss between the transmitter and receiver in 2D geometry. We provide the simulation results of indoor propagation prediction based on various ITU-R Recommendations. Simulation results described here indicate that the low and high frequency bands give quite different characteristics in presented indoor geometry. The propagation loss as a function of distance has two distinct regions. It is similar to that occurring in free space within 5-20m of the transmitter, however, increases significantly as the electromagnetic waves become obstructed by the walls at distances further away in the next region.

Propagation Mode Analysis of Leaky Coaxial Cable with Periodic Symmetrical Slots (주기적인 대칭 슬롯을 가진 누설동축 케이블의 전파모드 해석)

  • 홍용인;맹명재;김정기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.9
    • /
    • pp.53-63
    • /
    • 1994
  • In indoor radio systems, vehicular communication systems, and land mobile systems, a very important problem is that of maintaining stable communications at all locations. Therefore solutions for the indoor propagation problem are important aspects of the mobile communication system. leaky coxial cables are finding increasing use in communications systesm involving mines, tunnels, tailroads, and highways, and in new obstacle detection, or guided radar, schemes for ground transportation and perimenter surveilance. In this paper a leaky coaxial cable having periodic slots in the outer conductor is described to obtain the propagation modes in the various environments. We use aneccentric cylindrical model to develop the theory for surface-wave propagation on the cable. Numerical Results are also included for the propagation constants, field distribution and current distribution. First, we derive the electromagnetic equation for leaky coaxial cable having symmetrical periodic slots using mode-matching method and Floquet's theorem, and then find various modes, propagation constants, field distribution, etc.

  • PDF

Analysis of Loss Factor for Statistical Modeling for Indoor Environment (실내 환경에서 통계적 모델링을 위한 손실인자 분석)

  • 이권익;홍성욱;강부식;김흥수
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.865-868
    • /
    • 1999
  • In this paper, indoor propagation characteristics are analyzed for various environments such as corridors, walls and corners. In order to present the statistical model for indoor environments the loss factors of each case are obtained by linear regression analysis method with the function of logarithmic distance between transmitter and receiver.

  • PDF

Simulating and evaluating regolith propagation effects during drilling in low gravity environments

  • Suermann, Patrick C.;Patel, Hriday H.;Sauter, Luke D.
    • Advances in Computational Design
    • /
    • v.4 no.2
    • /
    • pp.141-153
    • /
    • 2019
  • This research is comprised of virtually simulating behavior while experiencing low gravity effects in advance of real world testing in low gravity aboard Zero Gravity Corporation's (Zero-G) research aircraft (727-200F). The experiment simulated a drill rig penetrating a regolith simulant. Regolith is a layer of loose, heterogeneous superficial deposits covering solid rock on surfaces of the Earth' moon, asteroids and Mars. The behavior and propagation of space debris when drilled in low gravity was tested through simulations and visualization in a leading dynamic simulation software as well as discrete element modeling software and in preparation for comparing to real world results from flying the experiment aboard Zero-G. The study of outer space regolith could lead to deeper scientific knowledge of extra-terrestrial surfaces, which could lead us to breakthroughs with respect to space mining or in-situ resource utilization (ISRU). These studies aimed to test and evaluate the drilling process in low to zero gravity environments and to determine static stress analysis on the drill when tested in low gravity environments. These tests and simulations were conducted by a team from Texas A&M University's Department of Construction Science, the United States Air Force Academy's Department of Astronautical Engineering, and Crow Industries