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In high-gpeed wirdess communications, an analyss of
the propagation characterigtics is an important process.
Infor mation on the propagation char acterigtics suitable for
each environment dgnificantly heps in the design of
mobile communications. This paper presents the analysis
results of radio propagation characterigics in outdoor
environmentsfor anew mobilewirdesssysem at 781 MHz
To avoid theinterference of Korean DTV broadcagting, we
measure the channd characterigics in urban, suburban,
and rural areason Jgu Idand, Republic of Korea, using a
channd sounder and 4x%4 antenna. The path loss (PL)
measurement  results differ  from those of exiging
propagation modds by more than 10 dB. To analyze the
frequency characterigics for Korean propagation
environments, we deive various  propagation
characterigic parameters. PL, dday spread, angular
soread, and K-factor. Finally, we verify the validity of the
measurement results by comparing them with the actual
measurement resultsand 3D ray-tracing Smulation results.
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|. Introduction

Thee days the IT paradigm is changing rapidly from
Internet-centered technology to the technology of integrating
human beings, objects, and computers. For this reason, the
number of sarvices required by wirdess communication
technologies has dso increased. Over the lagt two decades,
communicetion has become fagter and less expensive, and
communicetion sysems have become portable, networked,
and integrated. The existing 2G/3G communiceation technology
has difficulty meeting the technicd needs in the devel opment
of next-generation systems, so 4G communication technology
that can accommodate quditative changesin dl rdated aress of
mobile contert, gpplications, sarvices, terminds, and so on is
required [1]-[3].

Although the UHF band is currently dlocated for DTV
(470 MHz to 862 MHz), a portion of this band (790 MHz to
862 MH2z) will soon be assigned to the mobile communicetion
frequency [4]. In the mobile communication aress, the wave
propegations ae reflected, penetrated, diffracted, and
tranamitted aong the complicated multipath [5]-[9]. The path
loss (PL) and dday during the multipath transmission affect the
communication quaity and tranamisson gpeed [10]. Therefore,
predicting the PL and sgnd dday is an integrd part in
designing efficient communicetion networks [11]{13]. In
particular, the various dements of the surrounding environment
have different dectrical characteridics, which are the key
variableswhen predicting the propagation characterigtics[14].

However, the current Korean studies on the characterigtics of
wave propagations for mobile communications in the UHF
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band are inauffident. Although worldwide studies on thisissue
have been quite active, it is difficult to goply such studies to
Korean environments, as the study results are based on their
own particular environments. This is becauise the propagation
characteridics vary according to the type and amount of
buildings and forests loceted in each region.

In this paper, we measure the propagation characterigtics of
various environments on Jgu Idand a 781 MHz and andyze
various channd parameters. We andyze the PL for cdl
planning and dday soreed (DS) to choose the frequency
bandwidth. The angular spread (AS), K-factor, and other
dements ae dso andyzed to dudy the propagation
characterigics [15]. We perform a ray-tracing Smulation to
vdidate the andyss results. All of the main sructures, such as
buildings, roads, and forests, are moddled, and the dectric
properties of the Sructurd materials are messured [16].

Four typica environments are chosen to deveop a ste-
generd modd for the measurement environments. For eech
environment, severd different dtructures are numericdly
implemented, and the PL and dday chaacteridics ae
datigticaly modeed for each environment.

I1. Existing Propagation Model

In this paper, we study anumber of PL moddsto predict the
propagetion loss for a new mobile system frequency. InFig. 1,
there exist nine modds. Firgt, we compare the frequency band
of our modd with their frequency bands. There are Six existing
modds (Okumura, Hata, M.F. lbrahim, Sakahmi, COST WI,
WINNER+) within the same frequency band. The symbol
“O" meansit issuitable, and “ <" meansit isunsuitable.

Next, we compare andyzed environmentsin our modd with
those of the sx exiging modes dassfied in Fg. 1. We
congder urban, suburban, and rurad environments. In Fg. 2,
two exiging modds (Okumura and Hata) have the same
environment. We andyze the COST WI and WINNER models
Even though they do not have arurd environment, they can be
andyzed regarding urban and suburban environments. The
symbol “ A" meansthat a portion of the modd isslitable. The
modd by M.F. Inrahim and JD. Parsons and the modd by
Sakagmi and Kuboi are not suitable to compare with our
modd because they proposed an urban scenario andysis Thus,
four modds are used for the comparison, but the Okumura
modd is not mentioned because a formula was not provided
[17]. Table 1 reflects the environments of our proposed modd
and the exigting three models, which are used for the andlysis.

1. HaaModd

Developed based on fidd test results of the Okumura modd,
the Hata modd predicts various equations for a PL with
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Fig. 1. Applicable range of existing propagation models (frequency).
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Fg. 2. Applicablerange of exising propagation modd s (environmen).

Table 1. Summary of existing models and proposed model.

Mode | Frequency (MHZz) |Distance (km) Scenario
Hata 150 to 1,500 1to20 Urban/suburban/rural
COST W.I.| 800to 2,000 0.02to5 Urban/suburban
WINNER+| 450 to 6,000 0.003to 8 Urban/suburban
Proposed 756 to 806 0.05t02 | Urban/suburban/rura

different types of clutter. The Hatamodd’slimit isowing to the
range of test results from a carrier frequency of 150 MHz to
1,500 MHz. Representative mathematica PL modds for each
of the urban, suburban, and rurd environmentsareillugtrated in

D2, (3), and (4), respectively.
PL,,.,=69.55+26.16l09( f,) —13.82109(/5s) — a(hys)
+ (44.9-6.55l09(/,5))log(d) [dB], (D)

a(hy,s)=@.1og(f.)—0.7)h,s—(1.56l0g( f.)—0.8) [dB], (2)

PLsuburban = PLurban - 2{ Iog(fc/zs)}z -54 [dB]! (3)

PL,,=PL,...—478l0g( f.)} *+18.33log( f.)—40.94 [dB]. (4)

urban

ETRI Journal, Volume 34, Number 6, December 2012



In the Hata modd, d is the distance (km) between the base
dation (BS) and the mobile gation (MS), /gsis the height (m)
of the tranamitter, /s isthe height (m) of the receiver, and f; is
the center frequency (GHz) of the wirdless system.

2. COST 231 Walfisch-lkegami Model

The PL of the COST 231 Wadfisch-lkegami modd is
composed of free-gpace loss, Ly, multiple screen diffraction
loss, Ling, and rooftop-to-gtreet diffraction and scatter 10ss, Lys

(Fig. 3):

PLurban = LO + Lrts + Lmsd' (5)

Thefree-gpacelossisgiven by
L, =32.44+20log f, +20logd. )

The L, term describes the coupling of the wave propagation
dong a multiple-screen path into the sreet where the MS is
located.

L., =-16.89-10logw+10log f; + 20l09(/1zy — Fiys)- (7)

The heights of the buildings and their spatid separations dong
the direct radio path are modded using absorbing screens for
the determination of L.

Lmsd_urban = _18(1+ hBS - hRoof ) +54+ 18|Og d
/e :
+| —4+15/ ==--1||log f, —9logb, 6]
[ [925 9 /. g
Lmsdfwburban = —18(L+ hgg — hgoy ) +54+18logd

B I _ _ 9
+( 4+o.7(925 1Dlogfc 9logh. (9

Inthe COST 231 modd, d isthe distance (km) between the BS
and the MS, w is the digance (m) between outer wadls of the
building and the adjacent building, 5 is the distance (m)
between centers of the bilding and the adjacent building, /ss
isthe height (m) of the tranamitter, /s isthe height (m) of the
receiver, and 1. isthe center frequency (MH2).

BS MS

EHI 0

Fig. 3. 2D scenario for COST 231 Walfisch-lkegami model.

hMS

ETRI Journal, Volume 34, Number 6, December 2012

3. WINNER+ Modd

The PL characterigic of the WINNER+ modd uses the
following equation [4].

PL,,., =40.0log,,(d)+9.27-14.0l09,, (/gs)

—14.0log,,(h,s) +6.0log,,(f.)  [dB], (10)
PL o = 40.0100,,(d) +9.0-16.2100,, (/155)
~16.210g, (fys) +3810g,,(£,)  [dB].(11)

Inthe WINNER+ mode!, d isthe distance (m) between the BS
and the M S, /g5 is the height (m) of the tranamiitter, /s isthe
height (m) of the receiver, and f; is the center frequency (GHZ2)
of thewirdess system.

I11. Difference Between Existing Propagation Modd
and Measurement Data

1. Measurement Environments

The god of this study is to andyze the propagation
characteridtics of multiple antennas at the 781 MHz frequency
band in various Korean environments. We focus on basic
channd characteridics, which ae important for the
development and validation of redigtic channd moddls. Hence,
we condruct a messurement system for andyzing the
propagetion characteridics. To avoid interference from Korean
DTV broadcagting, we take measurements on Jgju Idand using
a4x4 antenna and a channd sounder from the Electronics and
Telecommunications Research Ingtitute (ETRI) of Korea. The
messurement scenario conddts of four different Tx locations
and Rx routes. The Tx location isfixed a each ste, and the Rx
is driven dong the measurement routes. Figure 4 shows an
aerid map of the measurement area.

In the transmitter and receiver equipment, the number of
antennas is four, respectively. The BSis located in the middle
of the vehide rooftop with an antenna height of 5 m. The
antenna of the MSwith an antennaheight of 1.5 misset onthe
end of the rooftop of another vehicle, as we are able to ignore
the reflection snce an absorber is inddled a the rear of the
vehide In addition, we messure the radio channd
characterigtics with a channd sounder. The base-band module
of the tranamitter generates an IF sgnd with a 50-MHz
bandwidth. The RF module has four switching Sgnds, and the
adjacent high power amplifier (HPA) module thet follows hasa
maximum power of up to 40 dBm. The samples stored by the
sounder are | and Q dataforms. The measured | and Q dataiis
converted into a power dday profile for an andyss of the
propagetion charecteridics. In the andyds, paths more then
20 dB bdow the maximum are discarded, as are taps of less
than 3 dB abovethenoiselevd [18], [19].
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2. Difference Anaysis Between the Measurement Dataand
Exigting Propagation Modds

Exigting propagation modds offer generd vaues according
to the surrounding environment, frequency, antennaheight, and
0 on. However, the actud messurement results can be
different from the results of the existing propagation modds.
Propagetion characterigics of multiple-input multiple-output
sysemsin this paper can dso be different from exiding single-
input dngle-output sysems. An andysis of the propagation
characteristics for the measurement environment and sysem is
needed, as the actud measurement environment can be
different from the environments of existing propageation modds.

To andyze the difference between the actua environment
and those of the generd propagation models, we messure the
received power levd in various environments. The distance
between the tranamitter and receiver is from 50 m to 1,000 m,
and the number of measurementsisfrom 50 to 700 points. The
PL vaues are derived by exduding the gain of the tranamitter
and receiver interms of received power level and are compared
with the vaues of the exigting propagation moddsin Fg. 5.

As sen in Fg. 5, the generd propagation modds have
different vauesin the same environment. The atenuation vaue
of the freeegpace modd is the lowest, as it is an ided
environment without any obstacles. The attenuation vaue of
each of the following models is grester in ascending order:
WINNER+, COST WI, and HATA.. Despite having the same
environment and frequency, each PL vdue is different. In the
urban environment in Fig. 5(a), the measurement dataissSmilar
to that for the WINNER+ modd, but the measurement datain
other environments in Figs. 5(b) through 5(d) differs from the
data for the exiging propageation modds. This means that the
topographic characterigtics, buildings, population densty, and
50 onin the Korean environment are different from those in the
exigting propagation modds. In Fg. 5(d), the WINNER+ and
COST WI models are excluded because these models do not
congider arurd environment a the 781 MHz frequency band.
Thus the propagation characteridics for the Korean
environment must be andyzed through a comparison with the
measurement  resullts and the rexults for the exiging
propagetion moddls. Therefore, a PL andysis suitable for a
domedtic environment is needed. To andyze the exact
envelope of the PL, we apply a moving average method in the
next section and andlyze the DS, AS, K-factor, and so on for
thefrequency characterigticsin aKorean environment.

IV. Channd CharacterigicsAnayss

1. PathLoss
A PL isamgor component in the andysis and design of the

ETRI Journal, Volume 34, Number 6, December 2012

link budget of a tedecommunication system. In this subsection,
we fit the meesured deta in various environments into a
formula and andyze the data ddidicdly through a
determinigtic channd andysis[20].

A PL isaparameter dependant on the distanceand isgiven as
[dB],

P,(d) = L,~10nlog, [dij +X,, (12)

ref
where Lyistheinitid vdue a the reference digance dy«, 1 isthe
PL index, and X;, isthe standard deviation (STD). Here, L, and
n are edimated by a regresson andysis of the measured
reception data. These parameters show the propagation
characteridtics of our mode. The PL reaults are shown aong
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Fig. 6. PL graph of various measurement environments.
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with thefitting resultsin Fig. 6. We consider the smple moving
average. A data point is given by the satisticad mean vaue over
the last n measurements (Fig. 7). The parameter n determines
the smoothness of the resulting curve. In addition, fast fading is
derived from the difference between the measured data and
moving average result. Figure 8 shows a fast fading range of
about —13 dB to 5 dB. Figure 9 shows a probability ditribution
function gragph for fagt fading. The urban, suburban 1, and
suburban 2 environments follow a Rayleigh digtribution, and
therura environment follows a Rician digtribution.

As mentioned in section 111, our meesured data differs from
that of the exising modds regarding suburban and rurd
environments in the 781-MHz frequency band. Therefore, in
andyzing the proposed modd and the existing modds with
adjacent frequencies in suburban and rurd environments, we
compare the PL vaues Figure 10 shows the PL vaues a
adjacent frequencies for each propagation modd in the
suburban environments. Results in the rura environment are
dmilar to those in the suburban cases. The comparison shows
that the PL reaults have about a 10-dB difference a the
adjacent frequencies. Therefore, a frequency characteridic
anaysisisneeded.
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2. Dday Spreed

The power delay prafile (PDP) is computed for dl measured
data by averaging the squared magnitudes of the channd
impulse response over dl odia channds Fgure 11(a) shows
the results of the PDP being measured repeatedly while
moving over adigance of 1 km. DS va ues cdculated through
the PDP are shown in Fg. 11(b). Figure 11(c) shows the
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Fig. 11. Measured DS.

cumulative distribution function (CDF) results of the measured
DSs Figure 12 plotsthe fitting results of the measured DS data,
that is, the mean of the root mean square (RMS) and the STD
of the RMS. As expected, thelargest DSs are found in the urban
environment, modly because of its high dendty of dugters
Moreover, the rurd environment shows a smdler DS, possbly
owing to amdler inter-vehide digancesand little duster scattering.

3. Angular Spreed

The AS is a measure of how multipath components arrive

ETRI Journal, Volume 34, Number 6, December 2012
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Fig. 15. Measured K-factor.
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relaive to the mean angle of arriva. The spread is commonly
measured in degrees and describes the width of the sector from
which most of the received Sgnd power arrives. The measured
ASdaaand fitting resultsare shown in Figs. 13 and 14.

4. K-Factor

In many radio environments, the complex path gain condgs
of afixed component plus azero-mean fluctuating component.
Often, this fluctuaion is complex Gaussan. Thus, the time-
varying envelope of the composte gan has a Rician
digribution. The ratio of the fixed and fluctuating power
components is defined as the K-factor [21]. The measured K-
factor dataisshowninFg. 15.

5. Corrdation Between Channd Parameters

The corrdaions of parameters observed in the measured
dataare reflected in thejoint power or probability distributions.
Generdly, the DS shows a positive corrdetion, and the PL, the
AS, and the K-factor show negative correlations according to
the distance. The highest corrdaion between the DS and
distanceisfound in the urban environment, mostly owing to its
high dengty of cluster scattering. A reduction in the overdl
power explains the negative corrdation between the PL and
distance. In addition, the AS shows why a negative corrdation
exigs when the Rx is far from the Tx, as the Rx recaives a
rdaively amdl angle of the Sgnd. The reduction of the line-
of-gght Sgnd explainsthe negative correl ation between the K-
factor and distance. The drongest correlation between the PL
and the distance is observed in the urban scenario. Because the
urban environment is most complicated, atenuation of the
received signd according to the increase of distance is greeter.
Tables 2 through 4 show corrdation coefficients between
individud parameters.

V. Veification of Measurement Results Usng Ray-
Tracing Method

To verify the vdidity of the measurement results, we create a
dmulation condition based on a geogragphic information
sysem map in red environments. The smulation environment
condggs of buildings and forest information smilar to a red
environment. A 3D dmulation is caried out after adding
information to the red propagation: diffraction, reflection,
scatering, and 0 on. We increese the rdiability of the
smulation by applying different vaues for the roads, buildings,
forests, and so forth.

In Fg. 16, the picture on the | eft isthe ray-tracing Smulation
screen based on the red urban environment that is shown in the
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Table 2. Correlation coefficients (urban).

Distance PL DS AS K-factor
Distance 10 -0.90 0.24 -0.57 -0.10
PL -0.90 10 -0.18 0.46 0.02
DS 0.24 -0.18 10 -0.39 0.07
AS -0.57 0.46 -0.39 10 0.49
K-factor | -010 | 0.02 0.07 0.49 10
Table 3. Corrdation coefficients (suburban).
Distance PL DS AS K-factor
Distance 10 -0.87 0.90 -0.09 -071
PL -0.87 10 -0.78 0.04 0.51
DS 0.90 -0.78 10 -0.04 -0.65
AS -0.09 0.04 -0.04 10 0.21
K-factor -0.71 0.51 -0.65 0.21 10
Table 4. Corrdation coefficients (rural).
Distance PL DS AS K-factor
Distance 10 -0.75 0.88 -0.79 0.4
PL -0.75 1.0 -0.42 0.63 0.29
DS 0.88 -0.42 10 -0.56 -047
AS -0.79 0.63 -0.56 10 0.40
K-factor -0.51 0.29 -0.47 0.40 10

photograph on the right. We compare the measurement resullts
with the ray-tracing results in Fg. 17. The ray-tracing results
ae dightly different from the measurement results, but their
tendencies are Smilar, with a difference of within 10 dB, which
isquite dight when considering the overd| tendency for decrease.
Therefore, the measurement dataof this paper can be determined
toberdiable

In an urban environment, the number of buildingsis greater
and the dengty of the dtructures is higher than in other
environments. Additiondly, thereis alarge floating population
and a dgnificant amount of parked cars. Therefore, the PL
atenuation in an urban environment is greseter than it isin other
environments.

The suburban 2 environment has wide roads and less traffic,
and one sSde of the road is an open areq, as shown in Fg. 18.
Therefore, its reflection and diffraction are less than they arein
the urban and suburban 1 aress. In short, the PL attenuetion is
less than it is in the urban and suburban 1 environments, as
showninFig. 19.

A rurd environment conssts of forestsand hills, asshownin
Fig. 20. As there are few buildings, the PL atenuation is less
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Fig. 16. Ray-tracing smulation and photograph of real street in
urban environment.
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Fig. 17. Comparison of measurement results with the ray-tracing
resultsin urban environment.

ZIN S

Fig. 18. Ray-tracing smulation and photograph of real street in
suburban 2 environment.
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Fig. 19. Comparison of measurement results with ray-tracing
resultsin suburban 2 environment.
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Fig. 20. Ray-tracing ssmulation and photograph of red sreet in
rura environment.
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Fig. 21. Comparison of measurement results with ray-tracing
resultsin rural environment.

than it is in the other environments, as shown in Fg. 21
However, like the other results, the ray-tracing results tend to
be amilar to the measurement results.

V1. Concluson

Recently, it has become necessary to verify propagation
channd system implementation to optimize the devel opment
of next-generation mobile communication systems, owing to
therapidly increasing needs of wireless communication and the
exploson of mobile communication services. For this reason,
we performed various andyses on the measurement of a
propagation channd on Jgu Idand, Republic of Korea. Fird, to
verify the propagation channd system used in next-generation
mobile communication in the 700 MHz band, we studied a
generd propageation modd in different regions and frequency
bands. After that, we compared our measurement results with
the results of exiging propageation moddsin smilar frequency
bands and environments. The PL vaue in the andyss results
showed a difference of more than 10 dB. Therefore, a
frequency characteridic andyss is needed for Korean
environments. In this paper, we andyzed the propagaion
characteridics in detall using the deterministic method as well
as one of the exiding andyds methods. According to the
andysdis reaults, the vaues of the DS and the AS were highest
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in an urban environment, whereas the K-factor was the highest
in a rurd environment. We dso verified the vdidity of the
measurement results through a comparison of the actud
measurement results and the 3D ray-tracing Smulation results.
We increased the rdiability of the smulation by applying a
smulation environment smilar to that of the actud
measurements. In condusion, our sudy will hdp in the cdl
planning of next-generation mobile communication services
through detailed channd modding a 781 MHz. In the future,
we will compare this daa to the locd propagation
charecteridtics of other places in Korea and other countries,
provided this frequency band has been dlocated in Korea.
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