• Title/Summary/Keyword: analysis of impact characteristics

Search Result 2,751, Processing Time 0.043 seconds

Axial Impact Collapse Analysis on Front-End Side Members of Vehicles by FEM (FEM에 의한 차량전면부 사이드부재의 축방향 충격압궤 해석)

  • Cha Cheon-Seok;Chung Jin-Oh;Yang In-Young
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.1-7
    • /
    • 2003
  • The front-end side members of vehicles(spot welded hat and double hat shaped section members) absorb most of the impact energy in a case of front-end collision. In this paper, specimens with various spot weld pitches have been tested with a high impact velocity of 7.19m/sec(impact energy of 1034J). The axial impact collapse simulation on the sections has been carried out to review the collapse characteristics of these sections, using an explicit finite element code, LS-DYNA3D. Comparing the results with experiments, the simulation has been verified; the energy absorbing capacity is analyzed and an analysis method is suggested to obtain exact collapse loads and deformation collapse modes.

Experimental Study on Side Impact Characteristics for Automotives Door Module (자동차용 도어 모듈의 측면 충돌특성에 관한 실험적 연구)

  • Jeon, S.J.;Kim, M.H.;Lee, G.B.;Lee, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.318-318
    • /
    • 2009
  • The door stiffness is one of the important factors side impact. Generally, the researches have been conducted on the assembled door module. This study is to analysis the side impact characteristics for automotives door module. The impact characteristics have been determined by door module side impact test machine. To determine the initial, intermediate and peak crush resistances use the plot of load versus displacement and obtain the integral of the applied load with respect to the crush distances specified below for each door tested. The initial crush resistance is the average force required to deform the door through the initial 6 inches of crush. The intermediate crush resistance is the average force required to deform the door through the initial 12 inches of crush. The peak crush resistance will be directly obtained from the plot of load versus displacement since it is the largest force required to deform the door through the entire 18 inches crush distance. The data are used to determine if a specific vehicle or item of automotives equipment meets the minimum performance requirements of the subject Federal Motor Vehicle Safety Standard(FMVSS). FMVSS Static 214, Side impact protection, specifies performance requirements for protection of occupants in side impact crashes.

  • PDF

A study on the impact pulse analysis with various shapes and materials of impactor (충격자의 형상 및 재질변화에 따른 펄스형성에 관한 연구)

  • Lee, Yeong-Sin;Kim, Dong-Jin;Gang, Geun-Hui;O, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.52-63
    • /
    • 1998
  • The impact programmer for impact test was designed and the impact analysis was conducted. The effects of the material and geometric parameters on the impact force and pulse shape were investigated. The impact characteristics were examined by experimental and finite element method. The impact test was conducted with free drop impact tester. The ABAQUS/Explicit 5.5 version was used for finite element analysis. The geometric parameters of the conical and dome type impact programmer were analyzed. The polyurethane impact programmers were fabricated and tested. The effects of the hardness and thickness of the impact programmer were studied. The peak acceleration and time duration of impact programmer have close correlation with the hardness, impact energy and thickness of the impactor. The experiment was good agreement with analytical predictions. The impact pulse shape generated with polyurethane impact programmer was half sine shape. The maximum impact force was proportional to impact energy. The impact acceleration was decreased with thickness of impact programmer. The maximum impact time duration level was about 2 msec.

An Analysis of Ice Impact Force Characteristics for the Arctic Structure Shape (극지 구조물 형상에 대한 빙충격 하중 특성 분석)

  • Jeong, Seong-Yeob;Cho, Seong-Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.469-477
    • /
    • 2012
  • This paper describes the characteristic analysis of ice impact force for the Arctic structure shape. In the present study an energy method has been used to predict the impact force during the ice-structure collision. This study also employs two concepts for reference contact area and normalized stress in analysis procedure. The influences of factors, such as impact velocity, full penetration depth, structure shape and ice floe size, are investigated. Full penetration occurs, particularly at lower impact velocity when ice thickness increase. But "typical size" ice floe does not expected ever to achieve full penetration during the impact procedure. The structure shape is the dominant factor in ice impact force characteristic. The results for various ice-structure collision scenarios are analyzed.

High-Velocity Impact Behavior Characteristics of Aluminum 6061 (알루미늄 6061의 고속 충격 거동 특성 연구)

  • Byun, Seon-Woo;Ahn, Sang-Hyeon;Baek, Jun-Woo;Lee, Soo-Yong;Roh, Jin-Ho;Jung, Il-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.465-470
    • /
    • 2022
  • This paper studied the high-velocity impact behavior characteristics of metal materials by crosschecking the high-velocity impact analysis with the high-velocity impact experiment results of aluminul 6061. The coefficients of the Huh-Kang material model and the Johnson-Cook fracture model were calculated through quasi-static using MTS-810 and dynamic experimenting using the Hopkinson bar equipment for high-velocity impact analysis. The penetration velocity and shape were predicted through high-velocity impact analysis using the LS-DYNA. The resultes were compared with the experiment results using a high-velocit experiment equipment. It is intended to be used the containment evaluation research for aircraft gas turbine engine blade.

Impact Analysis of a Pedestrian Lower Legform Model (보행자 다리 하체 모형의 차량 충돌해석)

  • Kim, Jin-Gon;Park, Yong-Kuk;Kim, Jung-Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.2
    • /
    • pp.52-56
    • /
    • 2012
  • Recently, the pedestrian protection regulations of Europe and Japan are becoming more stringent. However, it is difficult to evaluate the performance of protection because each regulation has different test conditions such as dummy, impact speed and so on. In this study, we construct a finite element model of pedestrian lower legform impactor prescribed in EEVC (European Experimental Vehicle Committee) W/G 10, and performed a impact analysis between the impactor and the front end module of vehicle. The simulations are carried out by using LS-DYNA3D, which is a well-known nonlinear dynamic simulation software. The analysis results according to various impact location show the impact characteristics of the lower legform.

A Study on the Design Optimization of Composite cylindrical shells with Vibration, Buckling Strength and Impact Strength Characteristics (복합재료 원통쉘의 진동, 좌굴강도, 충격강도 특성 및 그의 설계최적화에 관한 연구)

  • 이영신;전병희;오재문
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.48-69
    • /
    • 1997
  • The use of advanced composite materials in many engineering structures has steadily increased during the last decade. Advanced composite materials allow the design engineer to tailor the directional stiffness and the strength of materials as required for the structures. Design variables to the design engineer include multiple material systems. ply orientation, ply thickness, stacking sequence and boundary conditions, in addition to overall structural design parameters. Since the vibration and impact strength of composite cylindrical shell is an important consideration for composite structures design, the reliable prediction method and design methodology should be required. In this study, the optimum design of composite cylindrical shell for maximum natural frequency, buckling strength and impact strength are developed by analytic and numerical method. The effect of parameters such as the various composite material orthotropic properties (CFRP, GFRP, KFRP, Al-CFRP hybrid), the stacking sequences, the shell thickness, and the boundary conditions on structural characteristics are studied extensively.

  • PDF

Impact Analysis of Spiral type Electrodes in Vacuum Circuit Breaker (진공회로차단기용 횡자계방식 접점의 충격해석)

  • Park, W.J.;Ahn, K.Y.;Oh, I.S.;Huh, H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.895-900
    • /
    • 2001
  • It is very important for impact analysis to reflect the dynamic characteristics of materials as well as the static characteristics. As the dynamic behavior of a material is different from the static(or quasi-static) one due to the inertia effect and the stress wave propagation, an adequate experimental technique has to be developed to obtain the dynamic responses for the corresponding level of the strain rate. To determine the dynamic characteristics of materials, the Hopkinson bar (compression type) experiment is carried out. For using dynamic material properties, Johnson-Cook model is applied in impact analysis with explicit finite element method

  • PDF

Performance Improvement of an Integrated-type Fully-Hydraulic Breaker by Sensitivity Analysis (일체형 순수유압식 브레이커의 민감도해석에 의한 성능 향상)

  • Choi, S.;Chang, H.W.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.1
    • /
    • pp.17-24
    • /
    • 2009
  • The performance improvement of a small-size integrated-type fully hydraulic breaker is studied in this paper. Mathematical modeling of the breaker is established and verified by experiment. Through sensitivity analysis using AMESim, the key design parameters are selected and nearly optimized to maximize the impact energy as well as to improve the dynamic characteristics such as the piston upper chamber pressure, piston and valve displacements. As a result, the impact energy, blows per minute(bpm) and output power are increased by 52.9%, 1%, and 55.6%, respectively compared with the current design. The dynamic characteristics of the piston upper chamber pressure, piston and valve displacements are also improved by the design change.

  • PDF