• Title/Summary/Keyword: analysis and computation

Search Result 2,231, Processing Time 0.028 seconds

On Development of Vibration Analysis Algorithm of Beam with Multi - Joints(II) (다관절 보의 진동해석 알고리즘 개발에 관한 연구 (II))

  • 문덕홍;최명수;홍숭수;강현석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.256-266
    • /
    • 1997
  • The authors apply the transfer influence coefficient method to the 3. dimensional vibration analysis of beam with multi - joints and formulate a general algorithm to analyse the longitudinal, flexural and torsional coupled forced vibration. In this paper, a structure which is mainly found in the robot arms, cranes and so on, has some crooked parts, subsystems and joints, but has no closed loop in this system. It is modeled as the beam of a distributed mass system with massless translational, rotational and torsional springs in each node, and joint elements of release or roll at node which the displacement vector is discontinuous. The superiority of the present method to the transfer matrix method in the computation accuracy was confirmed from the numerical computation results. Moreover, we confirmed that boundary and intermediate conditions could be controlled by varying the values of the spring constants.

  • PDF

Temperature Characteristic Analysis according to Variation of Properties of Transformer Insulating Oil (변압기 절연유의 물성치 변화에 따른 온도특성해석)

  • Kim, Ji-Ho;Rhee, Wook
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.327-332
    • /
    • 2014
  • In this paper, the temperature distribution according to the property change of the insulating oil of the power transformer and max temperature were predicted through the ductility interpretation which heat-flow is coupled. By using CFD (Computation Fluid Dynamics) for the interpretation, the temperature distribution of 154kV the class single phase power transformer was predicted. The power loss causing the temperature rise of the transformer was changed to the heat source and we used as the input value for the heat-flow analysis. The temperature distribution was predicted according to the change of the density, specific heat, thermal conductivity and viscosity, that is the ingredient having an effect on the temperature rise of the transformer oil. The mineral oil of 4 kinds used in domestic and international based on the interpreted result was selected and the temperature distribution according to each load and Hot Spot temperature was predicted.

Numerical vibration correlation technique analyses for composite cylinder under compression and internal pressure

  • Do-Young Kim;Chang-Hoon Sim;Jae-Sang Park;Joon-Tae Yoo;Young-Ha Yoon;Keejoo Lee
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.419-429
    • /
    • 2023
  • This study conducts numerical analyses of a thin-walled composite cylinder under axial compression and internal pressure of 10 kPa. Numerical vibration correlation technique and nonlinear postbuckling analyses are conducted using the nonlinear finite element analysis program, ABAQUS. The single perturbation load approach and measured imperfection data are used to represent the geometric initial imperfection of thin-walled composite cylinder. The buckling knockdown factors are derived using present initial imperfection and analysis methods under axial compression without and with the internal pressure. Furthermore, the buckling knockdown factors are compared with the buckling test and computation time are calculated. In this study, derived buckling knockdown factors in present study have difference within 10% as compared with the buckling test. It is shown that nonlinear postbuckling analysis can derive relatively accurate buckling knockdown factor of present thin-walled cylinders, however, numerical vibration correlation technique derives reasonable buckling knockdown factors compared with buckling test. Therefore, this study shows that numerical vibration correlation technique can also be considered as an effective numerical method with 21~91% reduced computation time than nonlinear postbuckling analysis for the derivation of buckling knockdown factors of present composite cylinders.

Modal Analysis of Plate by Substructure Synthesis Method (부분구조합성법을 이용한 판의 모우드해석)

  • Jung, Jae-Hoon;Jee, Tae-Han;Park, Young-Pil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.65-74
    • /
    • 1994
  • Various substructure synthesis methods, such as component mode synthesis, building block analysis and reduced impedance method, are studied for the determination of vibration characteristics of plate problems. Comparisons are made for each methods in terms of accuracy and computational efficiency. Following conclusions are made from the results of computer simulations and experiments. i) The computation time of component mode synthesis is much shorter than that of whole structure analysis. The natural frequencies of lower modes obtained from component mode synthesis are almost same as those obtained from whole structure analysis, but in higher modes the differences between those two methods are increases. ii) The transfer function obtained from building block analysis is same as that obtained from the finite element method. iii) Same transfer functions can be obtained by the reduced impedance method. The computation time of reduced impedance mathod is shorter that that of general finite element method, but for the solutions in broad frequency band it requires long calculation time.

  • PDF

Parallel Computations for Boundary Element Analysis of Magnetostatic Fields (정자계의 경계요소 해석을 위한 병렬계산)

  • Kim, Keun-Hwan;Choi, Kyung;Jung, Hyun-Kyo;Lee, Ki-Sik;Hahn, Song-Yop
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.468-473
    • /
    • 1992
  • A boundary element analysis using parallel algorithm on transputers is described for three-dimensional magnetostatic field computations. The parallel algorithm are applied to assembling the system matrix and solving the matrix equation. Through the numerical results, it is shown that the computation time is ideally inverse proportional to the number of transputers, and the computational efficiency increases as the size of the system matrix becomes large. The easiness and simplicity in configuring the system hardware and making programs and computation times are compared in three kinds of topologies.

  • PDF

Contact Analysis on a Born-Holder Assembly for Wire Bonding (와이어 본더용 Horn-Holder Assembly의 접촉 해석)

  • Jang, Chang-Soo;Ahn, Geun-Sik;Kim, Young-Joon;Kwak, Dong-Ok;Boo, Seong-Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2008-2017
    • /
    • 2002
  • Joint structure of a transducer horn-holder assembly fur a wire bonder was examined through FEM contact analysis. A three dimensional modeling and analysis was carried out to survey the internal physics of this structure and to prove the accuracy of a computation compared to a measurement. After validation, a simple two dimensional model was built fur various parametric study considering the efficiency and speed of the computation. Several factors such as boundary conditions, a modeling boundary, mesh density and so on, were considered to obtain consistency with three dimensional analysis. An arc angle and a position of each holder boss were chosen as design parameters. A design of experiment was applied to find out an optimized design of the holder geometry. As a result, a guideline for holder boss design was suggested and main factors and their influence on stress concentration in the transducer horn were surveyed.

A Novel Method for Bitrate Control within Macroblocks Using Kalman and FIR Filters

  • Seok, Jin-Wuk;Yoon, Ki-Song;Kim, Bum-Ho;Lee, Jeong-Woo
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.641-644
    • /
    • 2011
  • In this letter, we propose a novel bitrate control, using both Kalman and FIR filters, based on a Hamiltonian analysis with respect to the amount of bits from each macroblock, in an encoding of a general video codec such as H.264/AVC. Since the proposed bitrate control is based on the simple computation of an optimal control method based on the Hamiltonian analysis, it is not necessary to use additional computation, such as a DCT or quantization, to estimate the bits for bitrate control. As a result, the proposed algorithm can be applied to single-pass encoding and can provide sufficient encoding speed with respect to various applications, even those requiring real-time control.

A Study on the Application of Conjugate Gradient Method in Nonlinear Magnetic Field Analysis by FEM. (유한요소법에 의한 비선형 자계 해석에 공액 구배법 적응 연구)

  • 임달호;신흥교
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.1
    • /
    • pp.22-28
    • /
    • 1990
  • This paper is a study on the reduction of computation time in case of nonlinear magnetic field analysis by finite element method and Newton-Raphson method. For the purpose, the nonlinear convergence equation is computed by the conjugate gradient method which is known to be applicable to symmetric positive definite matrix equations only. As the results, we can not prove mathematically that the system Jacobian is positive definite, but when we applied this method, the diverging case did not occur. And the computation time is reduced by 25-55% and 15-45% in comparison with the case of direct and successive over-relaxation method, respectively. Therefore, we proved the utility of conjugate gradient method.

  • PDF

Heat Transfer Analysis of a Linear Motor for Chip Mounter Applications (칩 마운터용 리니어 모터의 열전달 해석)

  • Jang, Chang-Soo;Kim, Jong-Young;Kim, Yung-Joon;Oh, Jung-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.396-401
    • /
    • 2001
  • Heat transfer analysis of a iron core type linear motor for surface mounting device applications was considered in this study. In order to avoid the complex conjugate problem a fluid flow regime and a solid regime were considered separately. First, film coefficients of the moving parts were evaluated from computational fluid dynamic analysis and those of the stationary parts from the existing empirical or analytic correlations. And then, by applying them, internal and external temperatures of the linear motor pal1s were computed through finite element analysis. Both computation and measurement were carried out with respect to motor driving power. The measurement did not exhibit a linear temperature variation trend with respect to motor power while the computation revealed a linear correlation. Nonetheless, the computations agreed with the measurements within an error range of 20%. It indicates that an adequate heat transfer model for the reciprocative coil assembly may help more exact prediction.

  • PDF

Mesh Stability Study for the Performance Assessment of a Deep Geological Repository Using APro

  • Hyun Ho Cho;Hong Jang;Dong Hyuk Lee;Jung-Woo Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.283-294
    • /
    • 2023
  • APro, developed in KAERI for the process-based total system performance assessment (TSPA) of deep geological disposal systems, performs finite element method (FEM)-based multiphysics analysis. In the FEM-based analysis, the mesh element quality influences the numerical solution accuracy, memory requirement, and computation time. Therefore, an appropriate mesh structure should be constructed before the mesh stability analysis to achieve an accurate and efficient process-based TSPA. A generic reference case of DECOVALEX-2023 Task F, which has been proposed for simulating stationary groundwater flow and time-dependent conservative transport of two tracers, was used in this study for mesh stability analysis. The relative differences in tracer concentration varying mesh structures were determined by comparing with the results for the finest mesh structure. For calculation efficiency, the memory requirements and computation time were compared. Based on the mesh stability analysis, an approach based on adaptive mesh refinement was developed to resolve the error in the early stage of the simulation time-period. It was observed that the relative difference in the tracer concentration significantly decreased with high calculation efficiency.