• Title/Summary/Keyword: analyses

Search Result 27,604, Processing Time 0.043 seconds

FE analyses and prediction of bursting forces in post-tensioned anchorage zone

  • Kim, Joung Rae;Kwak, Hyo-Gyoung
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.75-85
    • /
    • 2018
  • To improve the design equation for the evaluation of the bursting force in the post-tensioned anchorage zone, this paper presents the analyses and design of the post-tensioned (PT) anchorage zone on the basis of three dimensional (3D) finite element (FE) analyses. The structural behavior was investigated through linear elastic finite element analyses upon consideration of the change in design parameters such as the bearing plate size, the eccentricity, and the tendon inclination. Moreover, consideration of the duct hole, which causes an increase of the bursting stress with a change in its distribution along the anchorage zone as well, is emphasized. Since that an exact prediction of the bursting force is the primary interest in design practice, additional parametric analyses are carried out to evaluate the relative contribution of all design parameters in determining the bursting force, and a comparison with the design guidelines mentioned in AASHTO-LRFD has been provided. Finally, an improved design guideline that takes into account the influence by the duct hole is suggested.

Seismic analysis of Roller Compacted Concrete (RCC) dams considering effect of viscous boundary conditions

  • Karabulut, Muhammet;Kartal, Murat E.
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.255-266
    • /
    • 2020
  • This study presents comparation of fixed and viscos boundary condition effects on three-dimensional earthquake response and performance of a RCC dam considering linear and non-linear response. For this purpose, Cine RCC dam constructed in Aydın, Turkey, is selected in applications. The Drucker-Prager material model is considered for concrete and foundation rock in the nonlinear time-history analyses. Besides, hydrodynamic effect was considered in linear and non-linear dynamic analyses for both conditions. The hydrodynamic pressure of the reservoir water is modeled with the fluid finite elements based on the Lagrangian approach. The contact-target element pairs were used to model the dam-foundation-reservoir interaction system. The interface between dam and foundation is modeled with welded contact for both fixed and viscos boundary conditions. The displacements and principle stress components obtained from the linear and non-linear analyses are compared each other for empty and full reservoir cases. Seismic performance analyses considering demand-capacity ratio criteria were also performed for each case. According to numerical analyses, the total displacements and besides seismic performance of the dam increase by the effect of the viscous boundary conditions. Besides, hydrodynamic pressure obviously decreases the performance of the dam.

Seismic Analyses of Soil Pressure against Embedded Mat Foundation and Pile Displacements for a Building in Moderate Seismic Area (중진지역 건축물의 묻힌온통기초에 작용하는 토압과 말 뚝변위에 대한 지진해석)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.69-76
    • /
    • 2017
  • Seismic analyses of a pile under a large rigid basement foundation embedded in the homogeneous soil layer were performed practically by a response displacement method assuming a sinusoidal wave form. However, it is hard to take into account the characteristics of a large mat foundation and a heterogeneous soil layer with the response displacement method. The response displacement method is relevant to the 2D problems for longitudinal structures such as tunnel, underground cave structure, etc., but might not be relevant with isolated foundations for building structures. In this study, seismic pile analysis by a pseudo 3D finite element method was carried out to compare numerical results with results of the response displacement method considering 3D characteristics of a foundation-soil system which is important for the building foundation analyses. Study results show that seismic analyses results of a response displacement method are similar to those of a pseudo 3D numerical method for stiff and dense soil layers, but they are too conservative for a soft soil layer inducing large soil pressures on the foundation wall and large pile displacements due to ignored foundation rigidity and resistance.

Composite material optimization for heavy duty chassis by finite element analysis

  • Ufuk, Recep;Ereke, Murat
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.41-59
    • /
    • 2018
  • In the study, investigation of fiber- reinforced composite materials that can be an alternative to conventional steel was performed by finite element analysis with the help of software. Steel and composite materials have been studied on a four axle truck chassis model. Three-dimensional finite element model was created with software, and then analyzes were performed. The analyses were performed for static and dynamic/fatigue cases. Fatigue cases are formed with the help of design spectra model and fatigue analyses were performed as static analyses with this design spectra. First, analyses were performed for steel and after that optimization analyses were made for the AS4-PEEK carbon fiber composite and Eglass-Epoxy fiber composite materials. Optimization of composite material analyzes include determining the total laminate thickness, thickness of each ply, orientation of each ply and ply stacking sequence. Analyzes were made according to macro mechanical properties of composite, micromechanics case has not been considered. Improvements in weight reduction up to %50 provided at the end of the composite optimization analyzes with satisfying stiffness performance of chassis. Fatigue strength of the composite structure depends on various factors such as, fiber orientation, ply thickness, ply stack sequence, fiber ductility, ductility of the matrix, loading angle. Therefore, the accuracy of theoretical calculations and analyzes should be correlated by testing.

Nonlinear numerical analyses of a pile-soil system under sinusoidal bedrock loadings verifying centrifuge model test results

  • Kim, Yong-Seok;Choi, Jung-In
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.239-255
    • /
    • 2017
  • Various centrifuge model tests on the pile foundations were performed to investigate fundamental characteristics of a pile-soil-foundation system recently, but it is hard to find numerical analysis results of a pile foundation system considering the nonlinear behavior of soil layers due to the dynamic excitations. Numerical analyses for a pile-soil system were carried out to verify the experimental results of centrifuge model tests. Centrifuge model tests were performed at the laboratory applying 1.5 Hz sinusoidal base input motions, and nonlinear numerical analyses were performed utilizing a finite element program of P3DASS in the frequency domain and applying the same input motions with the intensities of 0.05 g~0.38 g. Nonlinear soil properties of soil elements were defined by Ramberg-Osgood soil model for the nonlinear dynamic analyses. Nonlinear numerical analyses with the P3DASS program were helpful to predict the trend of experimental responses of a centrifuge model efficiently, even though there were some difficulties in processing analytical results and to find out unintended deficits in measured experimental data. Also nonlinear soil properties of elements in the system can be estimated adequately using an analytical program to compare them with experimental results.

Stability analyses of dual porosity soil slope

  • Satyanaga, Alfrendo;Moon, Sung-Woo;Kim, Jong R.
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.77-87
    • /
    • 2022
  • Many geotechnical analyses require the investigation of water flow within partially saturated soil zone to incorporate the effect of climatic conditions. It is widely understood that the hydraulic properties of the partially saturated soil should be included in the transient seepage analyses. However, the characteristics of dual porosity soils with dual-mode water retention curve are normally modelled using single-mode mathematical equation for simplification of the analysis. In reality, the rainwater flow can be affected significantly by the dual-mode hydraulic properties of the soil. This paper presents the variations of safety factor for dual porosity soil slope with dual-mode water retention curve and dual-mode unsaturated permeability. This paper includes the development of the new dual-mode unsaturated permeability to represent the characteristics of soil with the dual-mode water retention curve. The finite element analyses were conducted to examine the role of dual-mode water retention curve and dual-mode unsaturated permeability on the variations of safety factor under rainfall loading. The results indicate that the safety factor variations of dual porosity soil slope modelled using the dual-mode water retention curve and the unsaturated permeability equation are lower than those of dual porosity slope modelled using single-mode water retention curve and unsaturated permeability equations.

Counting Research Publications, Citations, and Topics: A Critical Assessment of the Empirical Basis of Scientometrics and Research Evaluation

  • Wolfgang G. Stock;Gerhard Reichmann;Isabelle Dorsch;Christian Schlogl
    • Journal of Information Science Theory and Practice
    • /
    • v.11 no.2
    • /
    • pp.37-66
    • /
    • 2023
  • Scientometrics and research evaluation describe and analyze research publications when conducting publication, citation, and topic analyses. However, what exactly is a (scientific, academic, scholarly or research) publication? This article demonstrates that there are many problems when it comes to looking in detail at quantitative publication analyses, citation analyses, altmetric analyses, and topic analyses. When is a document a publication and when is it not? We discuss authorship and contribution, formally and informally published documents, as well as documents in between (preprints, research data) and the characteristics of references, citations, and topics. What is a research publication? Is there a commonly accepted criterion for distinguishing between research and non-research? How complete and unbiased are data sources for research publications and sources for altmetrics? What is one research publication? What is the unit of a publication that causes us to count it as "1?" In this regard, we report problems related to multi-author publications and their counting, weighted document types, the unit and weighting of citations and references, the unit of topics, and counting problems-not only at the article and individual researcher level (micro-level), but also at the meso-level (e.g., institutions) and macro-level (e.g., countries). Our results suggest that scientometric counting units are not reliable and clear. Many scientometric and research evaluation studies must therefore be used with the utmost caution.

Formulations of Sensitivity Analyses for Topological Optimum Modelings (위상학적 최적구조 모델링을 위한 민감도해석의 공식화)

  • Lee, Dong-Kyu;Shin, Soo-Mi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.241-248
    • /
    • 2008
  • The objective of sensitivity analyses is to identify critical variables of structural models and how their variability impacts mechanical response results. The sensitivity analyses have been used as significant basis data for practical applications of measuring and reinforcing fragile building structures. This study presents several sensitivity analysis methods for topological optimum designs of linear elastostatic structural systems. Numerical examples for structural analyses and topological optimum modeling demonstrate the reliability of sensitivities formulated in the present study.

Analyses of Dynamic Crypto Mechanism in Sensor Network Security (센서 네트워크 보안을 위한 정적인 보안 메카니즘에 대한 분석)

  • Kim, Jung-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.514-515
    • /
    • 2010
  • Security has become a major concern for many real world applications for wireless sensor networks. Usually, all these approaches are based on well known cryptographic algorithms. At the same time, performance analyses have shown that the applicability of sensor networks strongly depends on effective routing sessions or energy aware wireless communication. Based on our experiments, we provide some analyses and considerations on practical feasibility of such cryptographic algorithms in sensor networks.

  • PDF

Design and Analyses on the Spacer Grid of the PLWR Fuel (가압경수로 핵연료 지지격자의 기계/구조적 설계 및 분석)

  • Song, Kee-Nam
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.746-751
    • /
    • 2001
  • Design requirements for the nuclear fuel assembly grid of the pressurized water reactor are reviewed from the mechanical/structural point of view. And mechanical/structural tests and numerical analyses on the various spacer grid candidates that has been uniquely designed by KAERI are carried out to find out their mechanical/structural performance. As a result, the results from the numerical analyses are good agreements with test results.

  • PDF