• Title/Summary/Keyword: analogous material

Search Result 38, Processing Time 0.026 seconds

Substantivalism and Relationism in the 4 Dimensional Interpretation of Newtonian Space-Time (뉴턴 시공간의 4차원 해석에서의 실체론과 관계론 간의 논쟁)

  • Yang, Kyoung-Eun
    • Journal for History of Mathematics
    • /
    • v.30 no.2
    • /
    • pp.87-100
    • /
    • 2017
  • The ontological status of Newtonian space-time has been debated under the name of substantivalism-relationism controversy. The debates between the two parties are concerned with the nature of existence of space-time. Substantivalism maintains that the points of space-time have existence analogous to material substance. Relationism claims that space-time should be understood as the framework of possible spatio-temporal relations between bodies. Newtonian space is considered as a three dimensional entity in accordance with our geometric common sense. Yet given that the concept of motion is defined as the change of position throughout time, it is possible to interpret space-time as a 4 dimensional entity. In this essay, substantivalist-relationist debate is considered within the context of non-relativistic 4 dimensional space-time theory. This essay attempts to clarify the dispute over the ontology of space-time by elucidating the relationship between the ontology of space-time, motion, and space-time symmetry.

Study on the Path Independency of $\Delta$J Integral ($\Delta$J 적분의 경로독립성에 관한 연구)

  • 김태순;박재학;윤기봉
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.16-24
    • /
    • 1996
  • In this study we simulate the fatigue test of a compact tension specimen and obtain the displacements, stresses and strains by using the finite element method. And we examine the path independency of $\Delta$J integral values and compare it with $\Delta$J integral values calculated from load-load line displacement curve. From the results of this study, we can find that $\Delta$J integral show the path Independency for saturated materials. We can also find that the path independency of $\Delta$J Is not satisfied when different material Is assumed near the crack tip, but the difference in $\Delta$J is small. And $\Delta$J integral values calculated from load-load line displacement is very analogous with those from integration path but always have lower values than those from integration paths. In the case of crack closing, we found that $\Delta$J integral values from load-load line displacement should be calculated with the load Increment values based on the crack opening point. The unsaturated material is also simulated and its $\Delta$J shows different values according to the path, but the difference is small.

  • PDF

Finite element analysis of ratcheting on beam under bending-bending loading conditions

  • Sk. Tahmid Muhatashin Fuyad;Md Abdullah Al Bari;Md. Makfidunnabi;H.M. Zulqar Nain;Mehmet Emin Ozdemir;Murat Yaylaci
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.23-31
    • /
    • 2024
  • Ratcheting is the cyclic buildup of inelastic strain on a structure resulting from a combination of primary and secondary cyclic stress. It can lead to excessive plastic deformation, incremental collapse, or fatigue. Ratcheting has been numerically investigated on a cantilever beam, considering the current study's primary and secondary bending loads. In addition, the effect of input frequency on the onset of ratcheting has been investigated. The non-linear dynamic elastic-plastic approach has been utilized. Analogous to Yamashita's bending-bending ratchet diagram, a non-dimensional ratchet diagram with a frequency effect is proposed. The result presents that the secondary stress values fall sequentially with the increase of primary stress values. Moreover, a displacement amplification factor graph is also established to explain the effect of frequency on ratchet occurrence conditions. In terms of frequency effect, it has been observed that the lower frequency (0.25 times the natural frequency) was more detrimental for ratchet occurrence conditions than the higher frequency (2 times the natural frequency) due to the effect of dynamic displacement. Finally, the effect of material modeling of ratcheting behavior on a beam is shown using different hardening coefficients of kinematic hardening material modeling.

A Study on Dynamic Material Properties of Functional High Explosive Formulation Simulant Subjected to Dynamic Loading (동적하중을 받는 기능성 고폭화약조성 시뮬런트 재료물성 연구)

  • Park, Jungsu;Yeom, Kee Sun;Park, Chunghee;Jeong, Sehwan;Lee, Keundeuck;Huh, Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.857-866
    • /
    • 2013
  • This paper is concerned with the material properties of functional high explosive(FHX) simulant at various strain rates ranging from $10^{-4}/sec$ to $10^1/sec$. Material properties of FHX at high strain rates are important in prediction of deformation modes of FHX in a warhead which undergoes dynamic loading. Inert FHX stimulant which has analogous mechanical properties with FHX was utilized for material tests due to safety issues. Uniaxial tensile tests at quasi-static strain rates ranging from $10^{-4}/sec$ to $10^{-2}/sec$ and intermediate strain rates ranging from $10^{-1}/sec$ to $10^1/sec$ were conducted with JANNAF specimen using a tensile testing machine, INTRON 5583, and developed high speed material testing machine, respectively. Uniaxial compressive tests at quasi-static strain rates and intermediate strain rates were conducted with cylindrical specimen using a dynamic materials testing machine, INSTRON 8801. And cyclic compressive loading tests were performed with various strain rates and strains. Deformation behaviors were investigated using captured images obtained from a high-speed camera.

Bounds on plastic strains for elastic plastic structures in plastic shakedown conditions

  • Giambanco, Francesco;Palizzolo, Luigi;Caffarelli, Alessandra
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.107-126
    • /
    • 2007
  • The problem related to the computation of bounds on plastic deformations for structures in plastic shakedown condition (alternating plasticity) is studied. In particular, reference is made to structures discretized by finite elements constituted by elastic perfectly plastic material and subjected to a special combination of fixed and cyclic loads. The load history is known during the steady-state phase, but it is unknown during the previous transient phase; so, as a consequence, it is not possible to know the complete elastic plastic structural response. The interest is therefore focused on the computation of bounds on suitable measures of the plastic strain which characterizes just the first transient phase of the structural response, whatever the real load history is applied. A suitable structural model is introduced, useful to describe the elastic plastic behaviour of the structure in the relevant shakedown conditions. A special bounding theorem based on a perturbation method is proposed and proved. Such theorem allows us to compute bounds on any chosen measure of the relevant plastic deformation occurring at the end of the transient phase for the structure in plastic shakedown; it represents a generalization of analogous bounding theorems related to the elastic shakedown. Some numerical applications devoted to a plane steel structure are effected and discussed.

The Controversy on the Conceptual Foundation of Space-Time Geometry (시공간 기하학의 개념적 기초에 대한 논쟁)

  • Yang, Kyoung-Eun
    • Journal for History of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.273-292
    • /
    • 2009
  • According to historical commentators such as Newton and Einstein, bodily behaviors are causally explained by the geometrical structure of space-time whose existence analogous to that of material substance. This essay challenges this conventional wisdom of interpreting space-time geometry within both Newtonian and Einsteinian physics. By tracing recent historical studies on the interpretation of space-time geometry, I defends that space-time structure is a by-product of a more fundamental fact, the laws of motion. From this perspective, I will argue that the causal properties of space-time cannot provide an adequate account of the theory-change from Newtoninan to Einsteinian physics.

  • PDF

A Study on the Dualism of Hippie Style in the Modern Retro-Fashion (현대 Retro-패션에서의 Hippie Style의 Dualism에 관한 연구)

  • 이은숙;김새봄
    • The Research Journal of the Costume Culture
    • /
    • v.11 no.2
    • /
    • pp.231-242
    • /
    • 2003
  • This study was aimed at analyzing how the dualism of hippie style in the modern retro-fashion, namely, the neo hippie style and the hippie chic style were expressed. For this study, domestic & foreign fashion magazines, preceding theses, literatures, an encyclopedia, and Internet sites were reviewed. The results of this study could be summarized as follows; 1. Silhouette : The neo hippie style was expressed in slim and long silhouette to show the natural beauty. The hippie chic style was expressed in various silhouettes depending on designer's tastes. 2. Color : The neo hippie style was expressed in strong color and analogous color coordination to show richness of human nature. The hippie chic style was expressed in psychedelic color, multi-color, and fluorescent color to show an unconventional and a future oriented idea. 3. Material . The neo hippie style used such soft, thin, and flexible materials as chiffon, satin, silk, knit, etc. to show the natural beauty The hippie chic style used expensive and luxurious materials, high-technological materials, harmony of different materials, etc. 4. Pattern . In the neo hippie style, it was generally used various patterns including plant, animal, insect. In the hippie chic style, it was widely used the natural pattern as well as the ethnic pattern. The neo hippie style was characterized by the natural beauty, purity, elegance as style symbolizing the social problem, on the other hand, the hippie chic style was characterized by designer's identity suggesting an idea of new style rather than a symbol of the social problem.

  • PDF

A ROENTGENOGRAPHIC STUDY OF CORTICAL THICKNESS AND BONE DENSITY OF MANDIBLE (하악골의 피질골두께와 골치빈도에 관한 방사선학적 연구)

  • Shin Dong Jin;Lee Sang Rae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.14 no.1
    • /
    • pp.51-59
    • /
    • 1984
  • The aim of this study was to investigate the thickness of angular cortex and bone density of mandible in normal person. Age changes and sex differences of those were comprised in this study. Material included 456 pantomographic views and 309 intraoral films taken by paralleling technic. 1. Conclusions from this study were as follows. The thickness of mandibular angular cortex increased with age in both sexes before 15 to 19-year-old group. And those were relatively constant in the age range from 20 to 49 years in male and in the age range from 20 to 39 years in female, but decreased after that age. 2. The thickness of mandibular angular cortex were larger in male than in female. And no significant differences between sexes were noted before 40 to 49-year-old group. 3. Changes of bone density with age were analogous to changes of thickness of mandibular angular cortex. Correlation coefficients between changes of bone density and age were arranged, and male group underwent comparatively low correlation while insignificant statistically in female gruop. And no significant differences between sexes were found in all age groups except 50 to 59-year-old group.

  • PDF

A Study on Zirconia/Metal.Functionally Gradient Materials by Sintering Method(1) (소결법에 의한 $ZrO_2/Metal$계 경사기능재료에 관한 연구(1))

  • 정연길;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.321-329
    • /
    • 1994
  • Functionally gradient materials(FGM), which have the continuous or stepwise variation in a composition and microstructure, are being noticed as the material that solves problems caused by heterogeneous interface of coating or joining. And these materials also expect new functions occured by gradient composition itself. Therefore, to examine possibility of thermal barrier materials, TZP/Mo·FGM and TZP/Ni·FGM were fabricated by sintering method. As to the sintered specimens, sintering shrinkage, relative density and Vicker's hardness in each composition were examined. The phenomena due to the difference of sintering shrinkage velocity during sintering process and the thermal stress induced through differences of thermal expansion coefficient in FGM were discussed. And the structure changes at interface and microsturcture of FGM were investigated. As a results, the difference of shrinkage between ceramic and metal was about 14% in TZP/Mo and 7% in TZP/Ni. The relative density and hardness were considerably influenced by metal content changes. Owing to unbalance of sintering shrinkage velocity between ceramic and metal, various sintering defects were occured. To control these sintering defects and thermal stress, gradient composition of FGM should be narrow. The microstructure changes of FGM depended on the ceramic or metal volume percents and were analogous to the theoretical design.

  • PDF

An Experimental Study on the Effect of Electrohydrodynamic Monodisperse Atomization According to Nozzle Characteristics (노즐 특성에 따른 전기수력학적 단분산 미립화 효과에 관한 실험적 연구)

  • Sung, K.A.;Lee, C.S.
    • Journal of ILASS-Korea
    • /
    • v.10 no.2
    • /
    • pp.18-31
    • /
    • 2005
  • This study was performed to explore the liquid breakup and atomization characteristics for the classification of drop formation mode and background of uniform droplets generation in electrohydrodynmaic atomization according to the change of experimental parameters such as nozzle material (stainless steel. teflon). fluid flow rate, applied electrical field and intensity, and frequency. In results, from the classification map of drop formation modes according to the variation of applied AC voltage and frequency at a stainless nozzle, the droplet size was smaller than the outer diameter of the nozzle tip relatively in the spindle mode. The transition points became clearly to be moved toward the high applied voltage by rising the applied AC frequency beyond 450Hz. Also the droplet radius can be observed quite small in the frequency bandwidth of $350{\sim}450Hz$. The droplet radiuses decrease as the applied voltage increases for a fixed applied AC frequency within the range from 50Hz to 400Hz Over 400Hz, the relation between the power intensity and the droplet size was not consistent with a continuous mechanism of liquid breakup. Thus, it is showed that the droplet size distribution using the teflon nozzle was analogous to the results of stainless steel, but the droplet size was bigger than that of stainless steel relatively in case of a teflon nozzle.

  • PDF