• Title/Summary/Keyword: anaerobic/anoxic/oxic process

Search Result 29, Processing Time 0.02 seconds

PHOSPHORUS RELEASE AND UPTAKE ACCORDING TO NITRATE LOADING IN ANOXIC REACTOR OF BNR PROCESS

  • Kim, Kwang-Soo
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.257-263
    • /
    • 2005
  • A batch and a continuous type experiments were conducted to test the conditions for simultaneous phosphorus release and uptake, and denitrification, taking place in one process. The bacteria able to denitrify as well as to remove phosphorus were evaluated for the application to biological nutrient removal(BNR) process. In the batch-type experiment, simultaneous reactions of phosphorus release and uptake, and also denitrification were observed under anoxic condition with high organic and nitrate loading. However the rate and the degree of P release were lower than that occurred under anaerobic condition. BNR processes composed of anaerobic-anoxic-oxic(AXO), anoxic-anaerobic-oxic(XAO) and anoxic-oxic(XO) were operated in continuous condition. The anoxic reactors in each process received nitrate loading. In the AXO process, P release in anaerobic reactor and the luxury uptake in oxic reactor proceeded actively regardless to nitrate loading. However in XAO and XO processes, P release and luxury uptake occurred only with the nitrate loading less than $0.07\;kg{NO_3}^--N$/kgMLSS-d. With higher nitrate load, P release increased and the luxury uptake decreased. Therefore, it appeared that the application of denitrifying phosphorus-removing bacteria (DPB) to BNR process must first resolve the problem with decrease of luxury uptake of phosphorus in oxic reactor.

A Study on the Removal of Nitrogen and Phosphorus Depending on Existence of Cilia Media in Sewage in Anaerobic-Anoxic-Oxic Process ($A_2O$공정에서의 섬모상 담체 사용 유무에 따른 하수의 질소 . 인 제거에 관한 연구)

  • 박태진;이정민;송경석;조일형;김영규;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.69-75
    • /
    • 2000
  • This study was carried out to investigate the removal of nitrogen and phosphorus in municipal sewage according to the variation of volumetric ratio in the reactor. It also was performed to provide basic data necessary to the development and improvement of the process which is Anaerobic-Anoxic-Oxic(A2O). In the removal of BOD and COD, the best efficiency of the process showed in the condition of using the media, 1Q of internal recycle rate and 1:3:2 of the volumetric ratio in Anaerobic-Anoxic-Oxic process. In most cases, nitrogen and phosphorus removal efficiency of the process using the cilia media was superior to that of the process which didn't use the media. In the removal of T-N and T-P, the best efficiency of the process showed in the condition of using the media, 1Q of internal recycle rate and 1:3:2 of the volumetric ratio in Anaerobic-Anoxic-Oxic process.

  • PDF

Characterizations of Denitrifying Polyphosphate-accumulating Bacterium Paracoccus sp. Strain YKP-9

  • Lee, Han-Woong;Park, Yong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1958-1965
    • /
    • 2008
  • A denitrifying polyphosphate-accumulating bacterium (YKP-9) was isolated from activated sludge of a 5-stage biological nutrient removal process with step feed system. This organism was a Gram-negative, coccus-shaped, facultative aerobic chemoorganotroph. It had a respiratory type of metabolism with oxygen, nitrate, and nitrite as terminal electron acceptors. The 16S rRNA gene sequence of strain YKP-9 was most similar to the 16S rRNA gene sequence of Paracoccus sp. OL18 (AY312056) (similarity level, 97%). Denitrifying polyphosphate accumulation by strain YKP-9 was examined under anaerobic-anoxic and anaerobic-oxic batch conditions. It was able to use external carbon sources for polyhydroxyalkanoates(PHA) synthesis and to release phosphate under anaerobic condition. It accumulated polyphosphate and grew a little on energy provided by external carbon sources under anoxic condition, but did neither accumulate polyphosphate nor grow in the absence of external carbon sources under anoxic condition. Cells with intracellular PHA cannot accumulate polyphosphate in the absence of external carbon sources under anoxic condition. Under oxic condition, it grew but could not accumulate polyphosphate with external carbon sources. Based on the results from this study, strain YKP-9 is a new-type denitrifying polyphosphate-accumulating bacterium that accumulates polyphosphate only under anoxic condition, with nitrate and nitrite as the electron acceptors in the presence of external carbon sources.

Comparison of Anaerobic and Aerobic Sequencing Batch Reactor System for Liquid Manure Treatment (액상가축분뇨처리에서 혐기성 및 호기성 연속 회분식 반응조 시스템의 비교 연구)

  • Hong, Ji-Hyung
    • Journal of Animal Environmental Science
    • /
    • v.14 no.2
    • /
    • pp.113-118
    • /
    • 2008
  • Sequencing batch operation consists of fill, react, settle and decant phases in the same reactor. Operation consists of anaerobic, anoxic and oxic (aerobic) phases when nutrient removal from the wastewater is desired. Since the same reactor is used for biological oxidation (or mixing) and sedimentation in aerobic and anaerobic SBR operations, capital and operating costs are lower than conventional activated sludge process and conventional anaerobic digestion process, respectively. Therefore, Aerobic SBR and Anaerobic SBR operations may be more advantageous far treatment of small volume animal wastewater in rural areas.

  • PDF

A Study on Biological Treatment of Nitrogen and Phosphorus (생물학적 질소 및 인 제거에 관한 연구)

  • 이현동;유형열;김원만
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.1
    • /
    • pp.45-56
    • /
    • 1992
  • The Anaerbic Anoxic/oxic process is one of the biological treatment methods to remove nitrogen and phosphorus effectively which are nutritional elements for eutrophication. Supernatant of primary sediment of Anaerobic digester is used as a carbon source instead of methanol methanol supply in usual A$_{2}$/O process. The efficiency of the following treatment processes are as follow : 1) Changing recycle ratio in the usual A$_{2}$/O process without the stage of Anaerobic digester. 2) Changing recycle ratio in the usual A$_{2}$/O process with the supernatant supply of the Anaerobic digester. In the result of comparison, changing recycle ratio is almost no effect in the removal of phosphorus, however the effect of removal in nitrogenous substance are remarkable, and the effect of Anaerobic digester is not as effective as expected because the BOD removed in the digester partly, the rate of phosphorus to the BOD exceed pertinent range.

  • PDF

Biological Nitrogen and Phosphorus Removal Characteristics on Organic Material and Nitrate Loadings in SBR Process (연속회분식반응조에서 유기물 부하와 질산염농도에 따른 생물학적 질소 및 인 제거 특성)

  • Kim, I-Tae;Lee, Hee-Ja;Kim, Kwang-Soo;Bae, Woo-keun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.571-576
    • /
    • 2004
  • Since anaerobic/anoxic/oxic process, which is a typical mainstream biological nitrogen and phosphorus removal process, utilizes influent organic matter as an external carbon source for phosphorus release in anaerobic or anoxic stage, influent COD/T-P ratio gives a strong influence on performance of phosphorus removal process. In this study, a bench scale experiment was carried out for SBR process to investigate nitrogen and phosphorus removal at various influent COD/T-P ratio and nitrate loadings of 23~73 and 1.6~14.3g $NO_3{^-}-N/kg$ MLSS, respectively. The phosphorus release and excess uptake in anoxic condition were very active at influent COD/T-P ratios of 44 and 73. However, its release and uptake was not obviously observed at COD/T-P ratio of 23. Consequently, phosphorus removal efficiency was decreased. In addition, the phosphorus release and uptake rate in anoxic condition increased as the nitrate loading decreased. Specific denitrification rate had significantly high correlation with organic materials and nitrate loadings of the anoxic phase too. The rate of phosphorus release and uptake in the anoxic condition were $0.08{\sim}0.94kg\;S-P/kg\;MLSS{\cdot}d$ and $0.012{\sim}0.1kg\;S-P/kg\;MLSS{\cdot}d$, respectively.

Comparison of Phosphorus and Nitrogen Removal Characteristics between A2/O and Modified Phostrip Processes (A2/O공정과 수정 Phostrip공정과의 질소 및 인제거 특성비교)

  • Kim, Kwang-Soo;Kim, I-Tai
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.664-668
    • /
    • 2005
  • An experimental study for the comparison of nitrogen and phosphorus removal efficiencies between $A^2/O$ and modified Phostrip (M-Phostrip process) were carried out with bench-scale reactors. In case of nitrogen removal efficiencies both of processes showed similar ones when influent organic loadings were high. However, M-phostrip process was more effective than $A^2/O$ at low organic loadings. This is why M-phostrip process consumes the whole mass of influent organics as a carbon sources for denitrification in anoxic reactor but the anoxic reactor of $A^2/O$ process utilizes the residual carbon followed by consumming a part of influent carbon for phosphorus release in anaerobic reactor. $A^2/O$ process required the influent COD/T-P and COD/TKN ratios were more than 56 and 10, respectively, to take place the phosphorus release in anaerobic process and phosphorus uptake in oxic process. However, the luxury uptake of phosphorus in M-phostrip process was not affected by influent COD/T-P and COD/TKN ratios and the adverse effect of nitrate in return sludge introduced to the p-stripper from the 2nd clarifier was not significant due to the configurational advantage of the p-stripper.

Investigation of Operating Parameters on UCT Process for the Purpose of Nitrogen Removal Using Computer Simulation (하수의 질소제거시 컴퓨터 시뮬레이션을 이용한 UCT(University of Cape Town) 공정의 운영인자 검토)

  • 김병군;서인석;이해군;김창원
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.66-75
    • /
    • 1998
  • The computer simulation model was used to forecast the concentrations of COD$_{cr}$, NH$_{4}$$^{+}$-N and NO$_{3}$$^{-}$-N in each reactors. In the biological wastewater treatment system, the computer simulation model was used to observe the behavior of pollutants especially. In this research, effect of SRT, feeding pattern and recirculation rate on UCT(University of Cape Town) process was evaluated by computer simulation model. T-N removal was affected to the SRT. SRT for effective T-N removal was 15 days or longer. Feeding pattern in UCT process was affected to the T-N removal. Feeding pattern which 100% loading to the first reactor was most effective for T-N removal. The effect of recirculation rate was clear for T-N removal. The recirculation from anoxic reactor to anaerobic reactor was not need but the recirculation from oxic reactor to anoxic reactor was need. In aspect of nitrogen removal efficiency, A/O process was higher than UCT process.

  • PDF

Estimation of Sludge Reduction and Nitrogen Removal Possibility using OSA Process (OSA 공정을 이용한 하수슬러지 감량화 및 질소제거 가능성 평가)

  • Joo, Jae-Young;Yoon, Su-Chul;Nam, Duck-Hyun;Park, Chul-Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.5
    • /
    • pp.497-503
    • /
    • 2008
  • The Oxic-Settling-Anaerobic(OSA) process is a modified activated sludge processes for sludge reduction. It is evaluated that the sludge production in OSA process can decrease to 88% because of biomass decay and kinetic parameter($Y_H$ 0.237mgVSS/mgCOD, $b_H$ $0.195d^{-1}$) in anaerobic reactor, when compared with CAS process. However, it has problems caused by sludge reduction such as increase of nutrient loading. In case that the anoxic condition through the introduction of the intermittent aeration for the enhancement of nitrogen removal ability build up and enough rbCOD is suppled, maximum 88% of nitrogen is removed in the OSA process. If the OSA process optimizing the intermittent aeration cycle is applied to the separate sewage system with high rbCOD fraction, it can be converted to advanced process in terms of the sludge reduction and nitrogen removal, simultaneously.

Nutrients removal on Oxic/Anoxic time ratio in 2-stage-intermittent-aeration reactor (2단 간헐 포기조의 포기/비포기 시간비에 따른 영양염류 제거특성)

  • Kim, Hong Tae;Sin, Seok U;O, Sang Hwa;Gwon, Seong Hyeon
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.675-680
    • /
    • 2004
  • This study was conducted to remove organics and nutrients using 2 stage intermittent aeration reactor. First reactor, using suspended microbial growth in intermittent aeration instead of anaerobic reactor in the typical BNR process, used minimum carbon source to release P, and it was possible to reduce ammonia loading going to second reactor. In the second reactor, using moving media intermittent aeration, it was effective to reduce nitrate in non-aeration time by attached microorganisms having long retention time. In aeration time, nitrification and P uptake were taken place simultaneously. From the experiment, two major results were as follows. First, the removal of organics was more than 90%, and optimum aeration/non-aeration time ratio for organic removal was corresponded with aeration/non-aeration time ratio for nitrogen removal. Second, in the first reactor, optimum aeration/non-aeration time ratio was 15/75 (min.) because it was necessary to maintain 75 min. of non-aeration time to suppress of impediment of return nitrate and to lead release of phosphate. In the second reactor, optimum aeration/non-aeration time ratio was 45/90 (min.).