• 제목/요약/키워드: anaerobic/aerobic treatment

검색결과 182건 처리시간 0.027초

하수처리장에서의 암모니아 전환 미생물군의 생태학적 연구 (Microbial ecology of the anaerobic and aerobic ammonia-oxidizers in full-scale wastewater treatment systems)

  • 박홍근;김영모;이재우;김성표
    • 상하수도학회지
    • /
    • 제26권3호
    • /
    • pp.399-408
    • /
    • 2012
  • The overall goal of this study was to characterize and quantify ammonia-oxidizing bacteria (AOB) in four different full-scale sequence batch reactor (SBR) wastewater treatment plants. Also, this study focused on assessing the occurrence of the alternative ammonia-oxidizing microbes such as anammox (anaerobic ammonia oxidation) bacteria (AMX) and ammonia-oxidizing archaea (AOA) in these systems. Based on total AOB numbers and the estimated cell density in the mixed liquor samples, AOB constituted 0.3 - 1.8% of the total bacterial population in the four WWTPs. Based on clone library, Nitrosomonas ureae-like AOB were dominant in plant A and B, while plant C and D had Nitrosomonas nitrosa-like AOB as major AOB group. The four different AMX primer sets targeting AMX 16S rRNA gene produced PCR amplicons distantly related to Chlamydia and Planctomycetales group bacteria. However, it was not clear these groups of bacteria perform anammox reaction in the SBR plants. Also, molecular evidence of AOA was found in one of the SBR plants, with a sequence located in the deep branch of the sediment creanarchaeota group.

열처리 시간과 pH 하한값이 음식물쓰레기 연속 중온 수소 발효에 미치는 영향 (Effects of Pretreatment Time and pH low set value on Continuous Mesophilic Hydrogen Fermentation of Food Waste)

  • 김상현;이채영
    • 상하수도학회지
    • /
    • 제25권3호
    • /
    • pp.343-348
    • /
    • 2011
  • Since 2005, food waste has been separately collected and recycled to animal feed or aerobic compost in South Korea. However, the conventional recycling methods discharge process wastewater, which contain pollutant equivalent to more than 50% of food waste. Therefore, anaerobic digestion is considered as an alternative recycling method of food waste to reduce pollutant and recover renewable energy. Recent studies showed that hydrogen can be produced at acidogenic stage in two-stage anaerobic digestion. In this study, the authors investigated the effects of pretreatment time and pH low set value on continuous mesophilic hydrogen fermentation of food waste. Food waste was successfully converted to $H_2$ when heat-treated at $70^{\circ}C$ for 60 min, which was milder than previous studies using pH 12 for 1 day or $90^{\circ}C$. Organic acid production dropped operational pH below 5.0 and caused a metabolic shift from $H_2/butyrate$ fermentation to lactate fermentation. Therefore, alkaline addition for operational pH at or over 5.0 was necessary. At pH 5.3, the result showed that the maximum hydrogen productivity and yield of 1.32 $m^3/m^3$.d and 0.71 mol/mol $carbohydrate_{added}$. Hydrogen production from food waste would be an effective technology for resource recovery as well as waste treatment.

Morphological characteristics and nutrient removal efficiency of granular PAO and DPAO SBRs operating at different temperatures

  • Geumhee Yun;Jongbeom Kwon;Sunhwa Park;Young Kim;Kyungjin Han
    • Membrane and Water Treatment
    • /
    • 제15권1호
    • /
    • pp.1-9
    • /
    • 2024
  • Biological nutrient removal is gaining increasing attention in wastewater treatment plants; however, it is adversely affected by low temperatures. This study examined temperature effects on nutrient removal and morphological stability of the granular and denitrifying phosphorus accumulating organisms (PAO and DPAO, respectively) using sequencing batch reactors (SBRs) at 5, 10, and 20 ℃. Lab-scale SBRs were continuously operated using anaerobic-anoxic and anaerobic-oxic cycles to develop the PAO and DPAO granules for 230 d. Sludge granulation in the two SBRs was observed after approximately 200 d. The average removal efficiency of soluble chemical oxygen demand (SCOD) and PO43--P remained >90% throughout, even when the temperature dropped to 5 ℃. The average removal efficiency of NO3--N remained >80% consistently in DPAO SBR. However, nitrification drastically decreased at 10 ℃. Hence, the removal efficiency of NH4+-N was decreased from 99.1% to 54.5% in PAO SBR. Owing to the increased oxygen penetration depth at low temperatures, the influence on nitrification rates was limited. The granule in DPAO and PAO SBR was observed to be unstable and disintegrated at 10 ℃. In conclusion, morphological characteristics showed that changed conversion rates at low temperatures in aerobic granular sludge altered both nutrient removal efficiencies and granule formation.

Characterization of Bacillus species occurring anaerobic denitrification in night soil treatment

  • 박경주;조경숙;정은주;염혜경;이병헌;이민규;김중균
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.398-401
    • /
    • 2003
  • Bacillus species predominantly outgrown in a night soil treatment system were isolated and characterized. Cell interactions took place among them and cell population changed under various culture conditions. Maximum removal of $NH_4\;^+-N$ and cell production occurred under the conditions of 30% DO and C/N ratio of 8. Additions of 0.8% peptone and 0.3% yeast extract to a basal medium influenced the growth of isolates and the removal of $NH_4\;^+-N$ in flask culture, and metal ions such as Ca, Fe and Mg also did. During the flask experiment of nitrogen removal under an aerobic condition, active nitrification by the isolates occurred largely in 1 h with the decrease of COD and alkalinity destructed was only 74.6% of theoretical value. From the nitrogen balance, the percentage of nitrogen lost in the flask culture was estimated to be 29.0%. This conversion of ammonia to $N_2$ under an aerobic condition was confirmed by GC analysis. The B3 process using the Bacillus species seemed to have some economic advantage.

  • PDF

고효율 혐기성반응조 및 호기성여상 조합시스템에 의한 질소·유기물 동시 제거 (Simultaneous Carbon and Nitrogen Removal Using an Integrated System of High-Rate Anaerobic Reactor and Aerobic Biofilter)

  • 성문성;장덕;서성철;정보림
    • 상하수도학회지
    • /
    • 제13권2호
    • /
    • pp.55-65
    • /
    • 1999
  • AF(anaerobic filter)/BAF(biological aerated filter) system and UASB(upflow anaerobic sludge blanket)/BAF system, of which system effluents were recirculated to the anaerobic reactors in each system, were operated in order to investigate the performance in simultaneous removal of organics and nitrogen in high-strength dairy wastewater. Advanced anaerobic treatment processes of AF and UASB were evaluated on applicability as pre-denitrification reactors, and BAF was also evaluated on the performance in oxidizing the remaining organics and ammonia nitrogen. At system HRTs of 4.0 to 4.5 days and recirculation ratios of one to three, the AF/BAF system could achieve more than 99% of organics removals and 64 to 78% of total nitrogen removals depending upon the recirculation ratio. Although the UASB/BAF system also showed more than 99% of organics removals, total nitrogen removals in the UASB/BAF system were 53 to 66% which are lower than those in the AF/BAF system at the corresponding recirculation ratios. Optimum recirculation ratios considering simultaneous removal of organics and nitrogen and cost-effectiveness, were in the range of two to three. The upflow AF packed with crossflow module media, as a primary treatment of the anaerobic reactor/BAF system, showed better performances in denitrification, SS removals, and gas production than the UASB. Higher loading rate of suspended solids from the UASB increased the backwashing times in the following BAF. Especially, at a recirculation ratio of three in the UASB/BAF system, the increase in head loss due to clogging in the BAF caused frequent backwashing, at least once d day. The BAF showed the high nitrification efficiency of average 99.2% and organics removals more than 90% at organics loading rate less than $1.4KgCOD/m^3/d$ and $COD/NH_3-N$ ratio less than 6.4. It was proved that the simplified anaerobic reactor/BAF system could maximize the organics removal and achieve high nitrogen removal efficiencies through recirculation of system effluents to the anaerobic reactor. The AF/BAF system can, especially, be a cost effective and competitive alternative for the simultaneous removal of organics ana nitrogen from wastewaters.

  • PDF

다양한 전처리에 따른 중온혐기-고온호기 복합 슬러지 처리공정의 슬러지 처리효율 및 메탄 생성량 변화 (Effects of diverse Pre-treatment methods on the sludge digestion and methane production in combined mesophilic anaerobic and thermophilic aerobic sludge digestion process)

  • 하정협;박종문;박상규;조현욱;장현민;최석순
    • 유기물자원화
    • /
    • 제21권3호
    • /
    • pp.43-52
    • /
    • 2013
  • 본 연구에서는 유입 슬러지에 다양한 전처리 방법을 적용하여 전처리 방법이 중온혐기-고온호기 복합 슬러지 처리 공정의 슬러지 소화효율과 메탄가스 생성량에 미치는 영향을 비교 검증하였다. 실험실 규모의 슬러지 소화장치를 제작하여 서로 다른 유입 슬러지 전처리방법을 적용하여 4단계로 실험을 진행하였다. 1단계에서는 전처리를 하지 않은 슬러지를 공급하였고, 2, 3, 4단계에서는 각각 열처리, 열-알칼리처리, 장기 알칼리 처리(7일)를 거친 유입 슬러지를 공급하였다. 실험 결과, 1단계에서 4단계까지 진행되는 동안 총COD 제거율은 44%에서 76%까지 증가하였으며, 메탄 생성량 또한 101mL/L/day에서 165, 256mL/L/day까지 크게 증가하였다. 한편, 4단계에서는 7일간의 장기 알칼리 처리를 하였음에도 불구하고 3단계에 비해 총COD 제거율과 메탄 생성량이 증가하지 않았다. 결론적으로, 유입 슬러지의 전처리를 통해 복합 슬러지 처리 공정의 슬러지 제거 효율과 메탄생성량을 크게 증가시킬 수 있었으며, 여러 가지 전처리 방법 중 열-알칼리 처리법이 가장 효율적임을 실험결과를 통해 알 수 있었다.

연속 회분식 반응기를 이용한 폐수처리에서 고정화 슬러지의 거동 특성 (The behavior characteristics of immobilized sludge in waste water treatment using sequencing batch reactor(SBR).)

  • 최석순
    • 환경위생공학
    • /
    • 제11권2호
    • /
    • pp.1-7
    • /
    • 1996
  • The behavior of total organic carbon (TOC) and phosphate were observed for 15 days with immobilized activated sludge using polyacrylamide (PAA) by sequencing batch reactor (SBR). In the preparation of immobilized sludge by PAA, it was found that suitable acrylamide concentration for actual wastewater treatment was to be 15% through the batch test. When SBR system was operated in the repeated aerobic and anaerobic conditions, TOC removal efficiency was 92%. The uptake rate of phosphate was increased from 1.78 mg-P/g cell/hr on the 5th day of acclimation to 2.5 mg-P/g cell/hr on the 15th day of acclimation. And the total phosphorus content in PAA bead was increased from 40 mg-P/g cell on the 1st day of operation to 55 mg-P/g cell on the 15th day of operation. From this study, lowering the volume of aeration tank was possible when PAA bead was used in wastewater treatment and long operation was also possible without the settler.

  • PDF

유입하수에 따른 BNR에서의 N과 P 제거율에 관한 연구 (Removal Ratio of Nitrogen & Phosphorus according to Sewage Inflow in the Biological Treatment(Biological Nutrient Removal)Process)

  • 이한섭;정광보;안성환;김경호;원성권
    • 한국응용과학기술학회지
    • /
    • 제31권4호
    • /
    • pp.669-678
    • /
    • 2014
  • The amount of waste water generated from the domestic sources is consistently increasing in proportion to economic growth, and the conventional activated sludge process is widely being used for general waste water treatment. But the ministry of environment becomes stringthent treatment standards of N and P (less than 20mg/L of N, 2mg/L of P) to prevent the eutrophication of lake water, and therefore highly advanced treatment technology is required not only in the existing treatment plants where the activated sludge process is being used, but also in newly constructed treatment plants for the treatment of N and P. This study is aimed at highly operating the engineering technology method was developed by domestic to eliminate N and P at the same time. Experiments were conducted in the treatment plant located in Yong In city. The bioreactor was started from the principal equipment for the elimination of N and P and the elimination of organic compounds. It consists of an internal recycle piping from the end of the aerobic tank to the anoxic tank and external recycle piping from the final settling basin to the denitrification tank. By experiment of 4 types separate inflow of waste water to the denitrification tank and the anaerobic tank, and changes in staying time at the anoxic tank and the aerobic tank, the elimination of organic compounds in each type and the relationship in the efficiency between the elimination of N and P were researched.

Influence of Electric Potential on Structure and Function of Biofilm in Wastewater Treatment Reactor : Bacterial Oxidation of Organic Carbons Coupled to Bacterial Denitrification

  • NA BYUNG KWAN;SANG BYUNG IN;PARK DAE WON;PARK DOO HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1221-1228
    • /
    • 2005
  • Carbon electrode was applied to a wastewater treatment system as biofilm media. The spatial distribution of heterotrophic bacteria in aerobic wastewater biofilm grown on carbon electrode was investigated by scanning electron microscopy, atomic force microscopy, and biomass measurement. Five volts of electric oxidation and reduction potential were charged to the carbon anode and cathode of the bioelectrochemical system, respectively, but were not charged to electrodes of a conventional system. To correlate the biofilm architecture of bacterial populations with their activity, the bacterial treatment efficiency of organic carbons was measured in the bioelectrochemical system and compared with that in the conventional system. In the SEM image, the biofilm on the anodic medium of the bioelectrochemical system looked intact and active; however, that on the carbon medium of the conventional system appeared to be shrinking or damaging. In the AFM image, the thickness of biofilm formed on the carbon medium was about two times of those on the anodic medium. The bacterial treatment efficiency of organic carbons in the bioelectrochemical system was about 1.5 times higher than that in the conventional system. Some denitrifying bacteria can metabolically oxidize $H_{2}$, coupled to reduction of $NO_{3}^{-}\;to\;N_{2}$. $H_{2}$ was produced from the cathode in the bioelectrochemical system by electrolysis of water but was not so in the conventional system. The denitrification efficiency was less than $22\%$ in the conventional system and more than $77\%$ in the bioelectrochemical system. From these results, we found that the electrochemical coupling reactions between aerobic and anaerobic reactors may be a useful tool for improvement of wastewater treatment and denitrification efficiency, without special manipulations such as bacterial growth condition control, C/N ratio (the ratio of carbon to nitrogen) control, MLSS returning, or biofilm refreshing.

상향류식 혐기성조, 무산소조 및 수차호기조를 이용한 하수처리시 수리학적 체류시간의 변화와 메디아 충진이 질소 및 인 제거에 미치는 영향 (The Effects of Changing of Hydraulic Retention Time and Charging Media on the Removal of Nitrogen and Phosphorus in the Up-flow Anaerobic/Anoxic Reactor and Water-mill for Sewage Treatment)

  • 신명철;이영신
    • 한국환경보건학회지
    • /
    • 제35권1호
    • /
    • pp.64-70
    • /
    • 2009
  • The aims of this study is to examine the effects of the changes in HRT(Hydraulic Retention Time) and media charge in a water-mill, among other operation factors, on the nitrogen and phosphorus removal in order to use up-flow anaerobic reactors, anoxic reactors and water-mill aerobic reactors for sewage treatment. The extension of HRT improved the nitrogen removal efficiency, however the removal pattern was constant regardless of HRT. The removal of phosphorus was constant (80%-90%) regardless of the change in HRT. The removal rate with change in influx load varied such that at the OLR (Organic Load Rate) of 1-3 kg/d, the T-N removal efficiency was 80.7%-88.9% and the T-P removal efficiency was 82.9%-89.3% while at the NLR (Nitrogen Loading Rate) of 0.108-0.156 kg/d the removal efficiencies were 80.7-88.9% (T-N) and 82.9-89.3% (T-P). The analyses of the nitrogen and phosphorous removal characteristics with the C/N and C/P ratio showed that the mean T-N removal rate was 88% at the C/N ratio of 1.2-2.6, and that the mean T-P removal rate was 86% at the C/P ratio of 7.2-14.1. Also, the analysis of nitrogen and phosphorous removal characteristics were analyzed in relation to media charge. The comparison between with and without media charge in the water-mill showed that while the nitrogen removal efficiencies were 86-94% and 85-89% respectively, the difference of phosphorous removal efficiencies were between the two conditions was not significant, thus it suggested that the media charge has less effect on the removal efficiency of phosphorous compared to that of nitrogen.