• Title/Summary/Keyword: amplitude and phase spectrum

Search Result 66, Processing Time 0.032 seconds

Optimal Switching Pattern of Voltage Source Inverter (전압원인버어터의 최적스위칭패턴)

  • 정필선;정동화;이윤종
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.4
    • /
    • pp.386-398
    • /
    • 1987
  • This paper is proposed the Suboptimal PAWM(Pulse Amplitude Width Modulation) for minimize harmonic effects generated by switching operation of PWM Inverter. This strategy determine one switching pattern at a fixed point(fundamental) voltage u1=1.2) which THD(Total Harmonic Distortion) are minimized in the suboptimal PWM strategy, and controls only frequency in the inverter while voltage control is carried out by DC Chopper in the DC Link. This strategy is applied at VSD(Variable Speed Drive) of Three phase induction moter, and acoustic noise of motor, line to line voltage and current of inverter, current harmonic spectrum was estimated and also compared with other switching strategy. From the results, the validity of this strategy can be verified.

  • PDF

Performance Analysis of OFDM Communication System with the IQ Imbalance and Phase Noise (IQ Imbalance와 위상 잡음을 고려한 OFDM 통신 시스템의 성능 분석)

  • Kim, Sang-Kyun;Ryu, Heung-Gyoon;Kang, Byung-Su;Lee, Kwang-Chun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.757-765
    • /
    • 2007
  • OFDM system is an excellent high speed transmission method but it is seriously sensitive to the phase noise and IQ imbalance. Therefore, in this paper, we analyze the communication performance of the OFDM communication system with IQ imbalance and phase noise. Phase noise's variance can be calculated by integral calculus of phase noise power spectrum. From simulation results, it can be shown that the BER performances show different change according to the phase noise variance and IQ imbalance amount. When amplitude imbalance is ${\varepsilon}$=0.2; 0.3; 0.4 and phase imbalance is ${\phi}=10^0$, and distribution of phase noise is ${\sigma}^2=0.012$, BER is degraded by 2.88 dB, 3.61 dB, 4.09 dB in $10^{-5}$ in the respect of the SNR penalty.

Spectral Analysis and Performance Evaluation of VCXO using the Jig System (지그시스템을 이용한 VCXO의 스펙트럼 분석 및 성능평가)

  • Yoon Dal-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.4 s.310
    • /
    • pp.45-52
    • /
    • 2006
  • In his paper, we have developed the SMD(surface mounted device) type PECL(positive emitter-coupled logic) VCXO of the $5{\times}7mm$ size for gratifying the requested specifications and the multilayer ceramic SMD(surface mounted device) package technology. The VCXO wired with the PECL(positive emitter coupled logic) package take place a stray inductance and a parasitic capacitance by the length and the inner pattern of the VCXO and the amplitude attenuation and signal loss due to the reflection of power source and the noise component. We have developed the Zig system to analyze the precise spectrum and evaluate the performance. The basic operating voltage is the 3.3 V and have the frequency range of 120MHz-180MHz. The Q factor is over 5K and it has the low jitter characteristics of 3.5 ps and low phase noise.

Fiber Bragg grating sensor using a Mach-Zehnder interferometer and EDFA for EDFA for simultaneous measurement of strain and temperature. (마하젠더 간섭계와 EDFA를 이용한 온도와 스트레인을 동시에 측정하는 광섬유 브래그 격자 센서)

  • 최민호;김부균;정재훈;이병호
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.5
    • /
    • pp.371-375
    • /
    • 2001
  • We have implemented a sensor head which consists of erbium doped fiber pumped by 1480 nm LD and single fiber Bragg grating for simultaneous measurement of strain and temperature. The measurement precision and speed are improved by using Mach-Zehnder interferometer instead of optical spectrum analyzer (OSA) as a demodulator. The measurement precision of temperature measured by the amplitude variation of output signal is 0.05$^{\circ}C$ and that of strain measured by the phase variation of output signal is 0.1$\mu$strain. The measurement precision of temperature and strain are improved nearly 140 times and 700 times, respectively, compared to those using an OSA with wavelength resolution of 0.97 nm as d demodulator.

  • PDF

Harmonic Structure Features for Robust Speaker Diarization

  • Zhou, Yu;Suo, Hongbin;Li, Junfeng;Yan, Yonghong
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.583-590
    • /
    • 2012
  • In this paper, we present a new approach for speaker diarization. First, we use the prosodic information calculated on the original speech to resynthesize the new speech data utilizing the spectrum modeling technique. The resynthesized data is modeled with sinusoids based on pitch, vibration amplitude, and phase bias. Then, we use the resynthesized speech data to extract cepstral features and integrate them with the cepstral features from original speech for speaker diarization. At last, we show how the two streams of cepstral features can be combined to improve the robustness of speaker diarization. Experiments carried out on the standardized datasets (the US National Institute of Standards and Technology Rich Transcription 04-S multiple distant microphone conditions) show a significant improvement in diarization error rate compared to the system based on only the feature stream from original speech.

CFD study of an iterative focused wave generation method

  • Haoyuan Gu;Hamn-Ching Chen
    • Ocean Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-20
    • /
    • 2023
  • An iterative focused wave generation method is developed and implemented in a local analytic based Navier-Stokes solver. This wave generation method is designed to reproduce the target focused wave by matching the target amplitude spectrum and phase angle. A 4-waves decomposition scheme is utilized to obtain the linearised component of the output wave. A model test studying the interaction between different focused waves and a fixed cylinder is selected as the target for the wave generation approach. The numerical wave elevations and dynamic pressure on the cylinder are compared with the experimental measurement and other state-of-the-art numerical methods' results. The overall results prove that the iterative adjustment method is able to optimize the focused wave generated by a CFD approach.

Anaysis and design of inhomogeneous optical filters using tapered transmission line theory (테이퍼 전송선 원리를 이용한 불균일 굴절률 광여파기의 해석 및 설계)

  • 권영재;장호성;임성규;오명환
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.9
    • /
    • pp.36-42
    • /
    • 1997
  • Optical filters with graded index profiles are designed by applying the fourier transform to a riccati equation which governs the reflection and transmission characteristics of inhomogeneous refractive index distributions. The inhomogeneous refractive index profile of an optical filter with specified target spectrum is obtained through iterations. The spectra response of the inhomogeneous refractive index layers are analyzed by using runge-dutta numerical method to solve the differential euations of the amplitude and the phase of reflection coefficient derived from the riccati equation and the results are in good agreement with the resutls obtained by using matrix method.

  • PDF

Determination of Ocean Tidal components by GPS Observations (GPS관측 데이터를 이용한 해양의 조석성분 결정)

  • 윤홍식;이동하
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.45-54
    • /
    • 2003
  • This paper deal with the GPS performance for determining the ocean tidal loading components(M$_2$, N$_2$, S$_2$, K$_2$) and the availability of permanent GPS stations(CHJU, KANR) established in Korea. We determined the ocean tidal loading components from GPS observation by spectrum analysis and compared to that from global ocean tidal models(GOT00.2, FES99, CRS4.0, NAO99). Through this study, we have a sense that amplitude and phase lags of ocean tidal loading components from observed GPS data was almost equal to value calculated in ocean tide models. The diurnal ocean tide loading constituents are not considered, because unmodeled troposhere effects increase the noise level near the diurnal frequency band and prevent us from obtaining significant results.

  • PDF

Correction of MRI Artifact due to Planar Respiratory Motion (호흡운동에 의한 MRI 아티팩트의 수정)

  • 김응규;김규헌
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1863-1866
    • /
    • 2003
  • In this study, respiratory motion is modeled by a 2-Dimensional linear expanding-shrinking movement. According to the introduced model, respiratory motion imposes phase error, non-uniform sampling and amplitude modulation distortions on the acquired MRI data. When the motion parameters are known or can be estimated, a reconstruction algorithm based on superposition method was used to removed the MRI artifact. For the purpose of estimating unknown motion parameters, we applied the spectrum shift method to find the respiratory fluctuation function, the x directional expansion coefficient and its center, and also we used the minimum energy method to find the y directional expansion coefficient and its center. The effectiveness of this presented method is shown by Computer simulations.

  • PDF

MRI Artifact Correction due to Respiratory Motion (호흡운동에 따른 MRI 아티팩트 수정)

  • 김응규;김규헌
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.58-61
    • /
    • 2003
  • In this study, a planar respiratory motion is modeled by a 2-D linear expanding-shrinking movement. According to the introduced model, respiratory motion imposes phase error, non-uniform sampling and amplitude modulation distortions on the acquired MRI data. When the motion parameters are known or can be estimated, a construction algorithm based on superposition method was used to remove the MRI artifact. For the purpose of estimating unknown motion parameters, we used the spectrum shift method to find the respiratory fluctuation function, the x directional expansion coefficient and its center, and we also used the minimum energy method to find the y directional expansion coefficient and its center. Finally the effectiveness of this presented method is shown by computer simulations.

  • PDF