• Title/Summary/Keyword: amplitude and frequency characteristics

Search Result 643, Processing Time 0.03 seconds

Experimental and numerical investigation on the pressure pulsation in reactor coolant pumps under different inflow conditions

  • Song Huang;Yu Song;Junlian Yin;Rui Xu;Dezhong Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1310-1323
    • /
    • 2023
  • A reactor coolant pump (RCP) is essential for transporting coolant in the primary loop of pressurized water reactors. In the advanced passive reactor, the absence of a long pipeline between the steam generator and RCP serves as a transition section, resulting in a non-uniform flow field at the pump inlet. Therefore, the characteristics of the pump should be investigated under non-uniform flow to determine its influence on the pump. In this study, the pressure pulsation characteristics were examined in the time and frequency domains, and the sources of low-frequency and high-amplitude signals were analyzed using wavelet coherence analysis and numerical simulation. From computational fluid dynamics (CFD) results, non-uniform inflow has a great effect on the flow structures in the pump's inlet. The pressure pulsation in the pump at the rated flow increased by 78-128.7% under the non-uniform inflow condition in comparison with that observed under the uniform inflow condition. Furthermore, a low-frequency signal with a high amplitude was observed, whose energy increased significantly under non-uniform flow. The wavelet coherence and CFD analysis verified that the source of this signal was the low-frequency pulsating vortex under the steam generator.

Nonlinear Modeling Employing Hybrid Deformation Variables and Frequency Response Characteristics of a Cantilever Beam Undergoing Axially Oscillating Motion (축 방향 왕복운동을 하는 외팔보의 복합변형변수를 이용한 비선형 모델링 및 주파수 응답특성)

  • Kim, Na-Eun;Hyun, Sang-Hak;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.262-267
    • /
    • 2002
  • A nonlinear dynamic modeling method for cantilever beams undergoing axially oscillating motion is presented in this paper. Hybrid deformation variables are employed for the modeling method with which frequency response characteristics of a axially oscillating cantilever beams are investigated. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the frequency response characteristics. The effects of the amplitude and the damping constant on the frequency characteristics are also exhibited.

  • PDF

Amplitude Characteristics Analysis of Crosswell Seismic Tomography Data in Underground Cavity (지하공동지역에서 시추공간 탄성파 토모그래피 탐사자료의 진폭특성 분석 : 사례연구)

  • 서기황;유영철;유영준;송무영
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.129-137
    • /
    • 2003
  • We interpreted the seismic signal characteristics from crosswell seismic tomography in the underground cavity like abandoned mines. The first arrival time delay and amplitude attenuation showed clearly at the low velocity zone of cavity and fracture. Also ray density decreased by detour of raypath. As a result of the amplitude spectrum analysis of fresh rock and low velocity zone, there were no noticeable differences of the amplitude up to about 1000Hz frequency, but indicated that the one passed around cavity decreased about 7dB at 2000Hz, and 20dB at 3000Hz. It was possible to compare the signal characteristics between two media by extracting the signal data from the fresh rock zone and the underground cavity through the seismic crosswell tomography.

Experimental Study on Simplex Swirl Injector Dynamics with Varying Geometry

  • Chung, Yun-Jae;Khil, Tae-Ock;Yoon, Jung-Soo;Yoon, Young-Bin;Bazarov, V.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.57-62
    • /
    • 2011
  • The effects of swirl chamber's diameter and length on injector's dynamic characteristics were investigated through an experimental study. A mechanical pulsator was installed in front of the manifold of a swirl injector which produces pressure oscillations in the feed line. Pressure in the manifold, liquid film thickness in the orifice and the pressure in the orifice were measured in order to understand the dynamic characteristic of the simplex swirl injector with varying geometry. A direct pressure measuring method (DPMM) was used to calculate the axial velocity of the propellant in the orifice and the mass flow rate through the orifice. These measured and calculated values were analyzed to observe the amplitude and phase differences between the input value in the manifold and the output values in the orifice. As a result, a phase-amplitude diagram was obtained which exhibits the injector's response to certain pressure fluctuation inputs. The mass flow rate was calculated by the DPMM and measured directly through the actual injection. The effect of mean manifold pressure change was insignificant with the frequency range of manifold pressure oscillation used in this experiment. Mass flow rate was measured with the variation of injector's geometries and amplitude of the mass flow rate was observed with geometry and pulsation frequency variation. It was confirmed that the swirl chamber diameter and length affect an injector's dynamic characteristics. Furthermore, the direction of geometry change for achieving dynamic stability in the injector was suggested.

Emission Characteristic for High Efficiency and Low NOx of Externally Oscillated Oil Burner (외부가진 오일 버너의 고효율 저 NOx 배출특성)

  • Kim, Seong-Cheon;Song, Hyoung-Woon;Chun, Young-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.693-700
    • /
    • 2006
  • The important factor for the development of burner is the achievement of low emissions with maintaining combustibility. In case of maintaining high temperature flame and excess air to increase the combustibility, it is possible to achieve high combustion efficiency, due to the reduction of UHC(unborn hydrocarbon), carbon monoxide and soot. However, it is difficult to reduce the thermal NOx produced in the high temperature flame. To solve this problem, we developed externally oscillated oil burner which is possible for the high efficiency combustion and low NOx emission, simultaneously. The experiment of flame characteristics and NOx reduction were achieved according to the variation of frequency, amplitude and air velocity. Frequency, amplitude and air velocity are the most important parameter. The optimum operating conditions are frequency 1,900 Hz, amplitude 3 $V_{pp.}$ and air velocity 6.8 m/s. Reduction of NOx and CO are 47% and 22%, respectively.

Study on the Characteristics and Development of Impact Dynamic Vibration Absorber (충격식 감쇠기를 이용한 동흡진기의 개발에 관한 연구)

  • Kim, Won-Cheol;Lee, So-Hwan;Yang, Bo-Seok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.421-431
    • /
    • 1996
  • From comparing the impact dynamic absorber with the impact damper in the auxiliary vibration system with the conventional dynamic absorber, the following conclusions are obtained as follows ; 1. Recognizing that the amplitude restraining effect of the impact dynamic absorber become resonable in a comparison of conventional one development of an improved dynamic absorber may be probable. 2. With increasing the frequency ratio, the 1st resonance peak is higher but the 2nd one gets lower. In addition, the frequency ratio is peak located at the same resonance. 3. The optimum impact clearance is smaller and the vibration constraining effect becomes better with and increase in the mass of impact ball. And it is recognizable that the optimum tuning frequency ratio and impact clearance in an accordance with the mass ratio are varied. 4. The optimum tuning condition becomes gradually lower than the case of r=1 and maximum amplitude becomes lower with an increment in the mass ratio. However, the impulse clearance is larger and the working range of restraining vibration amplitude become smaller with a decrement in the mass of impact ball.

  • PDF

Experimental investigation on flow field around a flapping plate with single degree of freedom

  • Hanyu Wang;Chuan Lu;Wenhai Qu;Jinbiao Xiong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1999-2010
    • /
    • 2023
  • Undesirable flapping motion of discs can cause the failure of swing check valves in nuclear passive safety systems. Time-resolved particle image velocimetry (PIV) was employed to investigate the flow characteristics around a free-to-rotate plate and the motion response, with the Reynolds numbers, based on the hydraulic diameter of the channel, from 1.32 × 104 to 3.95 × 104. Appreciable flapping motion (±3.52°) appeared at the Reynolds number of 2.6 × 104 with the frequency of 5.08 Hz. In the low-Reynolds-number case, the plate showed negligible flapping. In the high-Reynolds-number case, the deflection angle increased with reduced flapping amplitude. The torque from the fluid determined the flapping amplitude. In the low-Reynolds-number case, Karman vortices were absent. With increasing Reynolds numbers, Karman vortices developed behind the plate with larger deflection angles. Strong interaction between the wake flow from the leading and trailing edge of the plate was observed. Based on power spectrum density (PSD) analysis, the vortex shedding frequency coincided with the flapping frequency, and the amplitude was positively correlated to the strength of the vortices. Proper orthogonal decomposition (POD) modes evince that, in the case of appreciable motion, coherent structures exhibited a larger spatial scale, enhancing the magnitude of the external torque on the plate.

A Combustion Characteristics of Attached Jet Flame under the Regular Oscillation (규칙적인 진동 하에서 노즐 부착된 제트화염의 연소특성)

  • Kim, Dae-Won;Lee, Kee-Man
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.55-62
    • /
    • 2009
  • A general combustion characteristics of forcing nonpremixed jet in laminar flow rates have been conducted experimentally to investigate the effect of forcing amplitude with the resonant frequency of fuel tube. There are two patterns of the flame lift-off feature according to the velocity increasing; one has the decreasing values of forcing amplitude on the lift-off occurrence when a fuel exit velocity is increasing, while the other has the increasing values. These mean that there are the different mechanisms in the lift-off stability of forced jet diffusion flame. Especially, the characteristics of attached jet flame regime are concentrically observed with flame lengths, shapes, flow response and velocity profiles at the nozzle exit as the central figure. The notable observations are that the flame enlogation, in-homing flame and the occurrence of a vortical motion turnabout have happened according to the increase of forcing amplitude. It is understood by the velocity measurements and visualization methods that these phenomena have been relevance to an entrainment of surrounding oxygen into the fuel nozzle as the negative part of the fluctuating velocity has begun at the inner part of the fuel nozzle.

Dynamic Vibration Absorber Having Coil Springs and Oil Damper for a Damped Vibration System (감쇠진동계에 부착된 코일스프링과 오일댐퍼로 구성된 동흡진기)

  • Ahn, C.W.;Park, S.C.;Lee, H.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.129-135
    • /
    • 1996
  • This paper presents the effectiveness of the dynamic vibration absorber consisting of a single mass, coil springs and oil damper on the resonance freauency ratio and amplitude ratio for damped linear systems, that is, primary vibration system with damping. The effects of the dynamic vibration absorber are investigated numerically and experimentally for values of mass ratio, natural frequency ratio, and damping ratio. The experimental results show good agreement with calculated ones. As a result, the characteristics shown by the present work are useful in optimal tuning the dynamic vibration absorber in practice.

  • PDF

Characteristics of Shear-Thinning Fluid Viscosity under Traversal Vibration (진동장에서의 전단박화 유체 점도의 특성 연구)

  • Ku Yun-Hee;Lee Ji-Hyung;Shin Sehyun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.317-320
    • /
    • 2002
  • The effect of vibration on the viscosity of a shear-thinning fluid was investigated with a newly designed pressure-scanning capillary viscometer. The viscometer was designed to measure non-Newtonian viscosity continuously over a range of shear rates at a time. Low frequency vibration was applied perpendicularly to the direction of the flow. The effect of the transversal vibration was investigated for both Newtonian fluids and non-Newtonian fluids. The experimental results showed that the vibration had no effect on the viscosity of the Newtonian fluids. However, the vibration caused a significant reduction of the shear-thinning fluid viscosity. The viscosity reduction was strongly dependent on both vibration frequency and shear rate. In addition, the viscosity reduction was affected by the amplitude of vibration, and, the bigger amplitude applied, the more viscosity reduction occurred.

  • PDF