• Title/Summary/Keyword: amplitude and frequency characteristics

Search Result 645, Processing Time 0.032 seconds

Characteristics of the Electric and Magnetic Field Waveforms Radiated by Lightning Discharges (뇌방전에 의해 방사되는 전계와 자계파형의 특성)

  • 이복희;이경옥
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.4
    • /
    • pp.300-309
    • /
    • 1996
  • The electric and magnetic fields radiated by lightning discharges are significantly changeable in amplitude and time, one of the topics concerning electromagnetic compatibility of modern electronic systems is the efficient and economic protection against transient voltages caused by not only by direct but also by nearly lightning strokes. In this paper, in order to obtain the detailed informations about lightning electromagnetic impulse waveforms, the electric and magnetic fields radiated by lightning discharges in the summer of 1995 were measured by a fast electric antenna and a loop-type magnetic field sensor, and their charac- teristics were presented and analyzed. The signals of the electric and magnetic fields were re- corded continuously by a transient digitizer having a resolution of 12 bit and a memory capacity of 5000 point and using a sampling time of 200 ns. The electric and magnetic field waveforms associated with lightning return strokes are significantly different with those of intracloud discharges. The magnetic fields radiated by intracloud lightning discharges have essentially the same waveforms as the electric field when the lightning discharhes are at distance of 50 km or more. Also the main frequency components of the electric and magnetic fields radiated by lightning discharges range from a few kHz to several hundred kHz.

  • PDF

Design and Estimation of Cordless Transmitter & Receiver for Measurement of Crane Moving Range (크레인의 이동거리 측정을 위한 무선 송수신기 설계 및 평가)

  • Kim, Tae-Soo;Oh, Inn-Yeal;Chun, Joong-Chang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.808-814
    • /
    • 2007
  • In this paper, the measurement system of crane moving range is concerned with range recognition technology using phase and magnitude of radio wave. By the proposed technology, we design the radio transmitter and receiver and realize the measurement system, and save the data in disk that is earned from 900Mhz RF signal, middle frequency 450khz of analog signal. As a result of RF measurement, we got 9.3 dBm of RF output and 96 dBc@10khz of phase noise. Range information is earned the data through digital signal processing of IF signal. For the estimation of range measured, we analyze the difference between real range and measurement range, and also suggest the method to remove the measurement error using average processing and amplitude properties. A result is 0.12 and 0.00422 deviation in l0mn-30m and within 5m respectively, and then 2.4E-04 deviation in 4m by using compensation of level characteristics lately.

New method for generation of artificial ground motion by a nonstationary Kanai-Tajimi model and wavelet transform

  • Amiri, G. Ghodrati;Bagheri, A.;Fadavi, M.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.709-723
    • /
    • 2007
  • Considering the vast usage of time-history dynamic analyses to calculate structural responses and lack of sufficient and suitable earthquake records, generation of artificial accelerograms is very necessary. The main target of this paper is to present a novel method based on nonstationary Kanai-Tajimi model and wavelet transform to generate more artificial earthquake records, which are compatible with target spectrum. In this regard, the generalized nonstationary Kanai-Tajimi model to include the nonstationary evaluation of amplitude and dominant frequency of ground motion and properties of wavelet transform is used to generate ground acceleration time history. Application of the method for El Centro 1940 earthquake and two Iranian earthquakes (Tabas 1978 and Manjil 1990) is presented. It is shown that the model and identification algorithms are able to accurately capture the nonstationary features of these earthquake accelerograms. The statistical characteristics of the spectral response of the generated accelerograms are compared with those for the actual records to demonstrate the effectiveness of the method. Also, for comparison of the presented method with other methods, the response spectra of the synthetic accelerograms compared with the models of Fan and Ahmadi (1990) and Rofooei et al. (2001) and it is shown that the response spectra of the synthetic accelerograms with the method of this paper are close to those of actual earthquakes.

Dynamic Behavior Analysis of the Auto-leveling System for Large Scale Transporter Type Platform Equipment on the Ground Slope (경사지에서 운용 가능한 대형 차량형 플랫폼 장비 자동수평조절장치의 동적 거동)

  • Ha, Taewan;Park, Jungsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.502-515
    • /
    • 2020
  • To identify the dynamic characteristics of the Auto-leveling system applied to the Tractor-Trailer type Transporter for mounting a large scale precision equipment, Dynamics Modeling & Simulation were performed using general Dynamics Analysis Program - RecurDyn(V9R2). The axial load data, transverse load data and pad trace data of leveling actuators were obtained from M&S. And they were analyzed and compared with each other by parameters, i.e. friction coefficients on the ground, landing ram speed of actuators, and direction & quantity of ground slope. It was observed that ground contact friction coefficients affected to transverse load and pad trace; the landing ram speed of actuators to both amplitude of axial & transverse load, and this phenomena was able to explain from the frequency analysis of the axial load data; the direction of ground slope to driving sequence of landing ram of actuators. But the dynamic behaviors on the two-directional slope were very different from them on the one-directional slope and more complex.

An Experimental Study of Aerodynamic Characteristics on a Projectile with Counter-Rotating Head Installed Fins (조종면이 장착된 회전하는 발사체에서의 공력특성 분석에 관한 실험적 연구)

  • Park, Young-Ha;Je, Sang-Eon;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.357-365
    • /
    • 2013
  • In this study, forces and moments were measured on a projectile which consisted of a missile configuration body(shell) and a head installed control fins. The shell and the head were separated each other and the shell was rotated by an electric motor. The head rotated reversely against the rotational direction of the shell. The rotational force on the head was obtained from a couple of fixed fins of which angular displacement were set to the rotational direction equally. The air velocity was 40m/s on the experiment and the Reynolds number based on the diameter of head was $1.3{\times}10^5$. The other couple of fins were used to control the position and direction of the projectile by changing the angular displacement. From this experiment, the variation of force and moment were measured on the rotating projectile, and the effective amplitude and frequency were obtained through the FFT analysis.

Driving Characteristics of the Scanning Mirrors to the Different width and Number of the Grooves on the Electrodes (전극 홈 형상에 따른 스캐닝 미러의 구동 특성)

  • Park, Geun-U;Kim, Yong-Gwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.11
    • /
    • pp.575-580
    • /
    • 2001
  • In this paper, using $500\mum-thickness\; (100)\; silicon\; wafer,\; flat\; 65\mum-thickness$ silicon mirror plates were fabricated through dry etching and wet etching, and $45\mum-depth$ grooved driving electrodes were fabricated through UV-LIGA process. Four shapes of the driving electrode were fabricated: twenty four grooves of the $50\mum-width$, twelve grooves of the $100\mum-width$, six grooves of the $200\mum-width$, and no grooves on the driving electrode. Fabricated mirror plate size and spring size are $2400\times2400\times65\mum3\; and \;500\times10\times65\mum3,$ respectively. Mirror plate parts and driving electrodes were assembled into the scanning mirrors. Measured natural resonance frequencies were about 600Hz which have error within $\pm 2%$ to calculated value. Due to the squeeze effect in the narrow gap between the mirror plate and the driving electrode, measured resonance frequencies were reduced as raising the amplitude of the mirror plate. In a case of driving electrode without grooves, the resonance frequency was reduced largely, compared with a case of driving electrode with grooves. According to the experimental results, squeeze effect was smaller in the driving electrode with smaller-width and many grooves. Therefore, the driving electrode with smaller-width and many grooves was effective in low voltage and high speed operation.

  • PDF

A Study on Malfunction Mode and Failure Rate Properties of Semiconductor by Impact of Pulse Repetition Rate (펄스 반복률에 의한 반도체 소자의 오동작 모드와 고장률에 관한 연구)

  • Park, Ki-Hoon;Bang, Jeong-Ju;Kim, Ruck-Woan;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.360-364
    • /
    • 2015
  • Electronic systems based on solid state devices have changed to be more complicated and miniaturized as the electronic systems developed. If the electronic systems are exposed to HPEM (high power electromagnetics), the systems will be destroyed by the coupling effects of electromagnetic waves. Because the HPEM has fast rise time and high voltage of the pulse, the semiconductors are vulnerable to external stress factor such as the coupled electromagnetic pulse. Therefore, we will discuss about malfunction behavior and DFR (destruction failure rate) of the semiconductor caused by amplitude and repetition rate of the pulse. For this experiment, the pulses were injected into the pins of general purpose IC due to the fact that pulse injection test enables the phenomenon after the HPEM is coupled to power cables. These pulses were produced by pulse generator and their characteristics are 2.1 [ns] of pulse width, 1.1 [ns] of pulse rise time and 30, 60, 120 [Hz] of pulse repetition rate. The injected pulses have changed frequency, period and duty ratio of output generated by Timer IC. Also, as the pulse repetition rate increases the breakdown threshold point of the timer IC was reduced.

Design of Crooked Wire Antennas for UHF Band RFID Reader (UHF 대역 RFID 리더용 Crooked Wire 안테나 설계)

  • Choo Jae-Yul;Choo Ho-Sung;Park Ik-Mo;Oh Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.5 s.96
    • /
    • pp.472-481
    • /
    • 2005
  • This paper reports the design of RFID reader antennas working in UHF band. The reader antennas were designed using a Pareto Genetic Algorithm(Pareto GA). Antennas were optimized to have circular polarization(CP) with less than 3 dB axial ratio, impedance matching with less than VSWR=2 within the frequency range of UHF, an adequate readable range, a restricted size(kr<2.22) considering the practical condition. After Pareto GA optimization, we selected and built the most suitable antenna design and compared the measured results to the simulations. Operating principle of the antenna was explained by investigating the amplitude and the phase of the induced current on the antenna body. We also researched the stability of the antenna with respect to the manufacturing error and studied the critical design parameters by applying the random error method on the antenna bent points.

Piezo-activated guided wave propagation and interaction with damage in tubular structures

  • Lu, Ye;Ye, Lin;Wang, Dong;Zhou, Limin;Cheng, Li
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.835-849
    • /
    • 2010
  • This study investigated propagation characteristics of piezo-activated guided waves in an aluminium rectangular-section tube for the purpose of damage identification. Changes in propagating velocity and amplitude of the first wave packet in acquired signals were observed in the frequency range from 50 to 250 kHz. The difference in guided wave propagation between rectangular- and circular-section tubes was examined using finite element simulation, demonstrating a great challenge in interpretation of guided wave signals in rectangular-section tubes. An active sensor network, consisting of nine PZT elements bonded on different surfaces of the tube, was configured to collect the wave signals scattered from through-thickness holes of different diameters. It was found that guided waves were capable of propagating across the sharp tube curvatures while retaining sensitivity to damage, even that not located on the surfaces where actuators/sensors were attached. Signal correlation between the intact and damaged structures was evaluated with the assistance of a concept of digital damage fingerprints (DDFs). The probability of the presence of damage on the unfolded tube surface was thus obtained, by which means the position of damage was identified with good accuracy.

GSR, HRV and EEG Analysis of Stress caused by Horror Image and Noise Stimulation (공포영상 및 소음자극에 의한 스트레스의 전기피부반응, 심박변이도 및 뇌파 해석)

  • Kim, Min Soo;Cho, Young Chang
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.381-387
    • /
    • 2017
  • Stress at work has become a serious problem affecting many people of different professions, life situations, and age groups. Stress management should start far before the stress start causing illnesses. In this study, studies were conducted to evaluate stress by measuring the Galvanic skin Response(GRS), Electrocardiograph(ECG), and Electroencephalogram(EEG) generated during images and noise stimuli. The GRS amplitude showed that the stress situation was 27.9 % higher than the baseline. And after the stimulus period, the response time of baseline was longer than 71.6 % than the stress situation. The stress response characteristics of the HRV showed that the rate of change in RMSSD was 16.4 %, and the rate of change of the HF Power was 29.7 %. EEG showed that the frequency band was gradually changed to the ${\theta}$ wave band during stress stimulation. We will be able to utilize image stimuli and noise stimuli as an objective indicator of stress and correlation.