• Title/Summary/Keyword: amplitude and frequency characteristics

Search Result 644, Processing Time 0.03 seconds

A Study on Design and Fabrication of SRD Impulse Generator and Antenna for Ground Penetrating Radar System (지반투과 레이더 시스템을 위한 SRD 임펄스 발생기 및 안테나의 설계 및 제작에 관한 연구)

  • Kim, Hyoung-Jong;Shin, Suk-Woo;Choi, Gil-Wong;Choi, Jin-Joo;Shin, Shang-Youal
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.509-516
    • /
    • 2011
  • In this paper, a ground penetrating radar(GPR) system is implemented for landmine detection. The performance of the GPR system is associated with the characteristics of local soil and buried target. The choice of the center frequency and the bandwidth of the GPR system are the key factors in the GPR system design. To detect a small and shallow target, the higher frequencies are needed for high depth resolution. We have been designed, fabricated and tested a new impulse generator using step recovery diodes. The measured impulse response has an amplitude of 6.2V and a pulse width of 250ps. The implemented GPR system has been tested real environmental conditions and has proved its ability to detect a small buried target.

Analysis of Doubly Fed Variable-Speed Pumped Storage Hydropower Plant for Fast Response (빠른 응답성을 갖는 가변속 DFIM 분석)

  • Sun, Jinlei;Seo, Joungjin;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.425-430
    • /
    • 2022
  • A pumped storage power station is an important means to solve the problem of peak load regulation and ensures the safety of power grid operation. The doubly fed variable-speed pumped storage (DFVSPS) system adopts a doubly fed induction machine (DFIM) to replace the synchronous machine used in traditional pumped storage. The stator of DFIM is connected to the power grid, and the three-phase excitation windings are symmetrically distributed on the rotor. Excitation current is supplied by the converter. The active and reactive power of the unit can be quickly adjusted by adjusting the amplitude, frequency, and phase of the rotor-side voltage or current through the converter. Compared with a conventional pumped storage hydropower station (C-PSH), DFVSPS power stations have various operating modes and frequent start-up and shutdown. This study introduces the structure and principle of the DFVSPS unit. Mathematical models of the unit, including a model of DFIM, a model of the pump-turbine, and a model of the converter and its control, are established. Fast power control strategies are proposed for the unit model. A 300 MW model of the DFVSPS unit is established in MATLAB/Simulink, and the response characteristics in generating mode are examined.

Modal identification of Canton Tower under uncertain environmental conditions

  • Ye, Xijun;Yan, Quansheng;Wang, Weifeng;Yu, Xiaolin
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.353-373
    • /
    • 2012
  • The instrumented Canton Tower is a 610 m high-rise structure, which has been considered as a benchmark problem for structural health monitoring (SHM) research. In this paper, an improved automatic modal identification method is presented based on a natural excitation technique in conjunction with the eigensystem realization algorithm (NExT/ERA). In the proposed modal identification method, damping ratio, consistent mode indicator from observability matrices (CMI_O) and modal amplitude coherence (MAC) are used as criteria to distinguish the physically true modes from spurious modes. Enhanced frequency domain decomposition (EFDD), the data-driven stochastic subspace identification method (SSI-DATA) and the proposed method are respectively applied to extract the modal parameters of the Canton Tower under different environmental conditions. Results of modal parameter identification based on output-only measurements are presented and discussed. User-selected parameters used in those methods are suggested and discussed. Furthermore, the effect of environmental conditions on the dynamic characteristics of Canton tower is investigated.

Seismic Analysis on Recycled Aggregate Concrete Frame Considering Strain Rate Effect

  • Wang, Changqing;Xiao, Jianzhuang;Sun, Zhenping
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.3
    • /
    • pp.307-323
    • /
    • 2016
  • The nonlinear behaviors of recycled aggregate concrete (RAC) frame structure are investigated by numerical simulation method with 3-D finite fiber elements. The dynamic characteristics and the seismic performance of the RAC frame structure are analyzed and validated with the shaking table test results. Specifically, the natural frequency and the typical responses (e.g., storey deformation, capacity curve, etc.) from Model 1 (exclusion of strain rate effect) and Model 2 (inclusion of strain rate effect) are analyzed and compared. It is revealed that Model 2 is more likely to provide a better match between the numerical simulation and the shaking table test as key attributes of seismic behaviors of the frame structure are captured by this model. For the purpose to examine how seismic behaviors of the RAC frame structure vary under different strain rates in a real seismic situation, a numerical simulation is performed by varying the strain rate. The storey displacement response and the base shear for the RAC frame structure under different strain rates are investigated and analyzed. It is implied that the structural behavior of the RAC frame structure is significantly influenced by the strain rate effect. On one hand, the storey displacements vary slightly in the trend of decreasing with the increasing strain rate. On the other hand, the base shear of the RAC frame structure under dynamic loading conditions increases with gradually increasing amplitude of the strain rate.

A simplified vortex model for the mechanism of vortex-induced vibrations in a streamlined closed-box girder

  • Hu, Chuanxin;Zhao, Lin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.309-319
    • /
    • 2021
  • The vortex-drift pattern over a girder surface, actually demonstrating the complex fluid-structure interactions between the structure and surrounding flow, is strongly correlated with the VIVs but has still not been elucidated and may be useful for modeling VIVs. The complex fluid-structure interactions between the structure and surrounding flow are considerably simplified in constructing a vortex model to describe the vortex-drift pattern characterized by the ratio of the vortex-drift velocity to the oncoming flow velocity, considering the aerodynamic work. A spring-suspended sectional model (SSSM) is used to measure the pressure in wind tunnel tests, and the aerodynamic parameters for a typical streamlined closed-box girder are obtained from the spatial distribution of the phase lags between the distributed aerodynamic forces at each pressure point and the vortex-excited forces (VEFs). The results show that the ratio of the vortex-drift velocity to the oncoming flow velocity is inversely proportional to the vibration amplitude in the lock-in region and therefore attributed to the "lock-in" phenomena of the VIVs. Installing spoilers on handrails can destroy the regular vortex-drift pattern along the girder surface and thus suppress vertical VIVs.

Seismic Stratigraphy of Upper Devonian Carbonates Area in Northern Alberta, Canada (캐나다 북부 알버타주 데본기 후기 탄산염암 지역의 탄성파 층서)

  • Lee, Min-Woo;Oh, Jin-Yong;Yun, Hye-Su
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.503-511
    • /
    • 2011
  • The Upper Devonian Grosmont Formation in northern Alberta, Canada, underlies the erosion unconformity that formed between the Cretaceous and Upper Devonian. The formation is divided into four units on the basis of intercalated shales and showing a typical shelf environment of shallowing-upward. It was possible to separate four units(LG~UG3), considering the seismic interpretation attributes of polarity, continuity, frequency/spacing and amplitude and showing the reflection characteristics of the medium-high amplitude, medium-low frequency, good continuity, and subparallel reflection events. The formation can be interpreted as shelf or platform, based on in-situ core data. However, it is difficult, only with reflection attributes and features, to recognize the boundaries and sedimentary environment of parasequence. Therefore, we try to interprete by parasequence set in this study. The parasequence set was formed by erosion unconformity with systems tracts. The erosion unconformity can be recognized by facies data and karst, erosional surface. Grosmont carbonate deposits ranging from platform and shelf to shelf slope are; by wedge-shaped strata of characterized by complex sigmoid-oblique progradational configurations, reflecting a depositional history of upbuilding and outbuilding in response to sea-level changes. Most of the sedimentary units is interpreted as platforms under regression and lowstand environments that support is evidences. In particular, shale layer at the basal part of the highstand systems tracts represents the regressive to lowstand of sea level.

A Modeling Study on the AVO and Complex Trace Analyses of the Fracture Bone Reflection (파쇄대 반사에너지의 AVO 및 복소트레이스 분석에 관한 모형연구)

  • Han Soo-Hyung;Kim Ji-Soo;Ha Hee-Sang;Min Dong-Joo
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.33-42
    • /
    • 1999
  • AVO and complex trace analyses mainly used to characterize natural gas reservoir were tested in this paper for a possible application to detection of major geological discontinuities such as fracture zones. The test data used in this study were calculated by utilizing a viscoelastic numerical program which was based on the generalized Maxwell body for a horizontal fracture model. In AVO analysis of a horizontal fracture zone, p-wave reflection appears to be variant depending upon the acoustic-impedence contrast and the offset distance. The fracture zone is also effectively clarified both in gradient stack and range-limited stack in which fracture zone reflection is attenuated with the increasing offset distance. In complex attribute plots (instantaneous amplitude, frequency, and phase), the top and bottom of the fracture Tone are characterized by a zone of strong amplitudes and an event of the same phase. Low frequency characteristics appear at the fracture zone and the underneath. Amplitude attenuation and waveform dispersion are dependent on Q-contrast between the fracture zone and the surrounding media. They were properly compensated by optimum inverse Q-filtering.

  • PDF

A Development of Jig Circuit for Performance Evaluation of an Oscillator (발진기의 성능평가를 위한 지그 회로의 개발)

  • Lin, Chi-Ho;Yoon, Dal-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.11
    • /
    • pp.95-101
    • /
    • 2008
  • We have used diversely the multilayer ceramic oscillator of the SMD(Surface Mounted Device) package technology that connects the crystal with the chip package. Such an oscillator occurs a stray inductance and a parasitic capacitance by the length and inner pattern. And it has been happened an amplitude attenuation and signal loss due to the reflection of power source and noise component. So we don't evaluate the precise performance of the oscillator for these factors. In this paper we have developed the Jig system to evaluate the performance of the oscillator. Through this system, we will expect an advanced performance of the oscillator and redesign an oscillator of the low jitter characteristics and low phase noise.

An Experimental Study on the Squeal Noise Generation due to Dynamic Instability of Brake Pad (브레이크 패드의 동적 불안정성에 따른 스퀼 소음 발생 원인의 실험적 연구)

  • Cho, Sangwoon;Lim, Byoungduk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.520-526
    • /
    • 2016
  • Squeal noise is a typical brake noise that is annoying to both passengers and pedestrians. Its frequency range is fairly wide from 1 kHz to 18 kHz, which can be distressful to people. The brake squeal noise occurs due to various mechanisms, such as the mode coupling of the brake system, self-excited vibration, unstable wear, and others. In this study, several parameters involved in the generation of a squeal noise are investigated experimentally by using a brake noise dynamometer. The speed, caliper pressure, torque, and friction coefficient are measured as functions of time on the dynamometer. The contact pressure and temperature distributions of the disc and the pad are also measured by using a thermal imaging camera and a pressure mapping system. As a result of the simultaneous measurement of the friction coefficient and squeal amplitude as functions of the velocity, it is found that the onset of the squeal may be predicted from the ${\mu}-v$ curve. It is also found that a non-uniform contact pressure causes instability and, in turn, a squeal. Based on the analysis results, design modifications of the pad are suggested for improved noise characteristics.

Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads

  • Fu, Qiang;Wu, Yang
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.241-254
    • /
    • 2019
  • A finite element approach is presented to examine ground vibration characteristics under various moving loads in a homogeneous half-space. Four loading modes including single load, double load, four-load, and twenty-load were simulated in a finite element analysis to observe their influence on ground vibrations. Four load moving speeds of 60, 80, 100, and 120 m/s were adopted to investigate the influence of train speed to the ground vibrations. The results demonstrated that the loading mode in a finite element analysis is reliable for train-induced vibration simulations. Additionally, a three-dimensional finite element model (3D FEM) was developed to investigate the dynamic responses of a track-ballast-embankment-ground system subjected to moving loads induced by high-speed trains. Results showed that vibration attenuations and breaks exist in the simulated wave fronts transiting through different medium materials. These tendencies are a result of the difference in the Rayleigh wave speeds of the medium materials relative to the speed of the moving train. The vibration waves induced by train loading were greatly influenced by the weakening effect of sloping surfaces on the ballast and embankment. Moreover, these tendencies were significant when the vibration waves are at medium and high frequency levels. The vibration waves reflected by the sloping surface were trapped and dissipated within the track-ballast-embankment-ground system. Thus, the vibration amplitude outside the embankment was significantly reduced.