• Title/Summary/Keyword: amperometric sensing

Search Result 21, Processing Time 0.02 seconds

Improvement of Sensing Performance on Nasicon Amperometric NO2 Sensors (나시콘 전류검출형 NO2 센서의 성능개선)

  • Kim, Gwi-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.912-917
    • /
    • 2007
  • Many electrochemical power devices such as solid state batteries and solid oxide fuel cell have been studied and developed for solving energy and environmental problems. An amperometric gas sensor usually generates sensing signal of electric current along the proportion of the concentration of target gas under the condition of limiting current. For narrow variations of gas concentration, the amperometric gas sensor can show higher precision than a potentiometric gas sensor does. In additional, cross sensitivities to interfering gases can possibly be mitigated by choosing applied voltage and electrode materials properly. In order to improve the sensitivity to $NO_2$, the device was attached with Au reference electrode to form the amperometric gas sensor device with three electrodes. With the fixed bias voltage being applied between the sensing and counter electrodes, the current between the sensing and reference electrodes was measured as a sensing signal. The response to $NO_2$ gas was obviously enhanced and suppressed with a positive bias, respectively, while the reverse current occurred with a negative bias. The way to enhance the sensitivity of $NO_2$ gas sensor was thus realized. It was shown that the response to $NO_2$ gas could be enhanced sensitivity by changing the bias voltage.

Fabrication of nanoporous gold thin films on glass substrates for amperometric detection of aniline

  • Lee, Keon-U;Kim, Sang Hoon;Shin, Hyung-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.354.1-354.1
    • /
    • 2016
  • Nanoporous gold (NPG) is a very promising material in various fields such as sensor, actuator, and catalysis because of its high surface to volume ratio and conducting nature. In this study, we fabricated a NPG based amperometric sensor on a glass substrate by means of co-sputtering of Au and Si. During the sputtering process, we found the optimum conditions for heat treatment to reduce the residual stress and to improve adhesion between NPG films and the glass substrate. Subsequently, Si was selectively etched from Au-Si alloy by KOH solution, which forms nanoporous structures. Scanning electron microscopy (SEM) and auger electron spectroscopy (AES) were used to estimate the structure of NPG films and their composition. By employing appropriate heat treatments, we could make very stable NPG films. We tested the performance of NPG sensor with aniline molecules, which shows high sensitivity for sensing low concentration of aniline.

  • PDF

Fabrication and Performances of Amperometric Gas Sensors (전류검출형 가스센서의 구성 및 성능평가에 관한 연구)

  • 김귀열;박용필;이준웅;서장수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1073-1075
    • /
    • 2001
  • The nitrogen oxides, NO and NO2, abbreviated usually as NOx, emitted from combustion facilities such as power plants and automobiles are the typical air-pollutants causing acid rain and photochemical smog. In order to solve the NOx-related pollution problems effectively, we need efficient techniques to monitor NOx in the combustion exhausts and in environments. Development of solid-state electrochemical devices for detecting NOx is demonstrated based on various combination of solid electrolytes and auxiliary sensing materials. The object of this research is to develop various sensor performance for solid state amperometric sensor, and to test gas sensor performance manufactured. So we try to present a guidance for developing amperometric gas sensor. We concentrated on development of manufacturing process and performance test.

  • PDF

Technology of Amperometric Gas Sensors (전류검출형 가스센서의 기술)

  • 김귀열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.222-225
    • /
    • 2002
  • The nitrogen oxides, NO and NO2, abbreviated usually as NOx, emitted from combustion facilities such as power plants and automobiles are the typical air-pollutants causing acid rain and photochemical smog. In order to solve the NOx-related pollution problems effectively, we need efficient techniques to monitor NOx in the combustion exhausts and in environments. Development of solid-state electrochemical devices for detecting NOx is demonstrated based on various combination of solid electrolytes and auxiliary sensing materials. The object of this research is to develop various sensor performance for solid state amperometric sensor, and to test gas sensor performance manufactured. So we try to present a guidance for developing amperometric gas sensor.

  • PDF

Amperometric Gas Sensors Research of Solid Electrode (고채전해질을 사용한 전류검출형 가스센서 연구)

  • 서장수;김귀열;백승철;김용주
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.924-926
    • /
    • 2000
  • The nitrogen oxides, NO and NO2, abbreviated usually as NOx, emitted from combustion facilities such as power plants and automobiles are the topical air-pollutants causing acid rain and photochemical smog. In order to solve the NOx-related pollution problems effectively, we need efficient techniques to monitor NOx in the combustion exhausts and in environments. Development of solid-state electrochemical devices for detecting NOx is demonstrated based on various combination of solid electrolytes and auxiliary sensing materials. The object of this research is to develop various sensor performance for solid state amperometric sensor, and to test gas sensor performance manufactured. So we try to present a guidance for developing amperometric gas sensor. We concentrated on development of manufacturing process and performance test.

  • PDF

Fabrication and Characteristics of Amperometric NO2 Gas Sensors (전류검출형 NO2가스 센서의 제작과 특성평가)

  • Kim, Gwi-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.821-827
    • /
    • 2007
  • The nitrogen oxides, NO and $NO_2$, abbreviated usually as NOx, emitted from combustion facilities such as power plants and automobiles are the typical air-pollutants causing acid rain and photochemical smog. In order to solve the NOx-related pollution problems effectively, we need efficient techniques to monitor NOx in the combustion exhausts and in environments. Development of solid-state electrochemical devices for detecting NOx is demonstrated based on various combination of solid electrolytes and auxiliary sensing materials. The object of this research is to develop various sensor performance for solid state amperometric sensor, and to test gas sensor performance manufactured. So we try to present a guidance for developing amperometric gas sensor. We concentrated on development of manufacturing process and performance test. Amperometric Nitrogen dioxide sensor was fabricated using NASICON and an $NaNO_2$ layer deposited on the counter electrode. The current response was almost linear with Nitrogen dioxide concentration in the range 1-350 ppb at $150^{\circ}C$.

An Amperometric Proton Selective Sensor with an Elliptic Microhole Liquid/Gel Interface for Vitamin-C Quantification

  • Faisal, Shaikh Nayeem;Hossain, Md. Mokarrom;Lee, Hye-Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.121-126
    • /
    • 2010
  • An amperometric ascorbic acid selective sensor utilizing the transfer reaction of proton liberated from the dissociation of ascorbic acid in aqueous solution across an elliptic micro-hole water/organic gel interface is demonstrated. This redox inactive sensing platform offers an alternative way for the detection of ascorbic acid to avoid a fouling effect which is one of the major concerns in redox based sensing systems. The detection principle is simply measuring the current change with respect to the assisted transfer of protons by a proton selective ionophore (e.g., ETH 1778) across the micro-hole interface between the water and the polyvinylchloride-2-nitrophenyloctylether gel phase. The assisted transfer reaction of protons generated from ascorbic acid across the polarized micro-hole interface was first characterized using cyclic voltammetry. An improved sensitivity for the quantitative analysis of ascorbic acid was achieved using differential pulse stripping voltammetry with a linear response ranging from 1 to $100\;{\mu}M$ concentrations of ascorbic acid. As a demonstration, the developed sensor was applied for analyzing the content of vitamin-C in different types of commercial pharmaceutical tablets and syrups, and a satisfactory recovery from these samples were also obtained.

Portable Amperometric Glucose Detection based on NiS/CuS Nanorods Integrated with a Smartphone Device

  • Heyu Zhao;Kaige Qu;Haoyong Yin;Ling Wang;Yifan Zheng;Shumin Zhao;Shengji Wu
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.252-261
    • /
    • 2023
  • Glucose detection is particularly important for clinical diagnosis and personal prevention and control. Herein, the smartphone-based amperometric glucose sensors were constructed using the NiS/CuS nanorods (NRs) as sensing electrodes. The NiS/CuS NRs were prepared through a facile hydrothermal process accompanied by the subsequent vulcanization treatment. The morphological and structural properties of NiS/CuS NRs were characterized with SEM, EDS, XRD, and XPS. Electrochemical measurements including cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy display that NiS/CuS NRs can act as highly efficient electrocatalyst for glucose detection. The NiS/CuS NRs electrodes present a wide detection range of 1-8000 µM for glucose sensing with the sensitivity of 956.38 µA·mM-1·cm-2. The detection limit was 0.35 µM (S/N=3). When employed in smartphone-based glucose sensing device, they also display a high sensitivity of 738.09 µA·mM-1·cm-2 and low detection limit of 1.67 µM. Moreover, the smartphone-based glucose sensing device also presents favorable feasibility in determination of glucose in serum samples with the recoveries ranging between 99.5 and 105.8%. The results may provide a promising viewpoint to design other new portable glucose sensors.

Measurement of Glucose Concentration Using a μFIA Biosensor (μFIA 바이오 센서를 이용한 포도당 농도 측정)

  • ;Joseph Irudayaraj
    • Journal of Biosystems Engineering
    • /
    • v.28 no.5
    • /
    • pp.465-468
    • /
    • 2003
  • A microdialysis coupled flow injection amperometric biosensor was calibrated to measure the concentration of glucose using 7 standard samples from 10ml to 70ml of glucose solution. The output of the sensor increased linearly with an increase in the glucose concentration with an $R^2$ correlation of 0.99. The amperometric biosensor was then applied to measure the. glucose concentration of 2 commercial samples(Orange and Pineapple juice) and the results compared with HPLC. Around 12% error was observed in glucose concentration measurements of the samples analyzed. The sensor has potential in rapid measurement once the calibration is done. Potential for on-line sensing is also discussed.

Measurement of Sucrose Concentration Using a μFIA Biosensor (μFIA 바이오센서를 이용한 자당 농도 측정)

  • Song D. B.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.6 s.107
    • /
    • pp.553-557
    • /
    • 2004
  • A microdialysis coupled flow injection amperometric $({\mu}FIA)$ biosensor was calibrated to measure the concentration of sucrose using 11 standard samples from 2 ml to 70 ml of sucrose solution. The output of the sensor increased linearly with an increase in the sucrose concentration with an $r^2$ correlation of 0.99. The amperometric biosensor was then applied to measure the sucrose concentration of 4 commercial samples (Orange and Pineapple juices, Pepsi, Sprite) and the results compared with those by HPLC. Around $20\~30\%$ error was observed in sucrose concentration measurements of the samples analyzed. The sensor has potential in rapid measurement once the calibration is done. Potential for on-line sensing is also discussed.