• Title/Summary/Keyword: amp1 mutant

Search Result 35, Processing Time 0.023 seconds

Signal Transduction of C-Terminal Phosphorylation Regions for Equine Luteinizing Hormone/Chorionic Gonadotropin Receptor (eLH/CGR)

  • Byambaragchaa, Munkhzaya;Joo, Hyo-Eun;Kim, Sang-Gwon;Kim, Yean-Ji;Park, Gyeong-Eun;Min, Kwan-Sik
    • Development and Reproduction
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • This study aimed to investigate the signal transduction of phosphorylation sites at the carboxyl (C)-terminal region of equine luteinizing hormone/chorionic gonadotropin receptor (eLH/CGR). The eLH/CGR has a large extracellular domain of glycoprotein hormone receptors within the G protein-coupled receptors. We constructed a mutant (eLH/CGR-t656) of eLH/CGR, in which the C-terminal cytoplasmic tail was truncated at the Phe656 residue, through polymerase chain reaction. The eLH/CGR-t656 removed 14 potential phosphorylation sites in the intracellular C-terminal region. The plasmids were transfected into Chinese hamster ovary (CHO)-K1 and PathHunter Parental cells expressing β-arrestin, and agonist-induced cAMP responsiveness was analyzed. In CHO-K1 cells, those expressing eLH/CGR-t656 were lower than those expressing eLH/CGR wild-type (eLH/CGR-wt). The EC50 of the eLH/CGR-t656 mutant was approximately 72.2% of the expression observed in eLH/CGR-wt. The maximal response in eLH/CGR-t656 also decreased to approximately 43% of that observed in eLH/CGR-wt. However, in PathHunter Parental cells, cAMP activity and maximal response of the eLH/CGR-t656 mutant were approximately 173.5% and 100.8%, respectively, of that of eLH/CGR-wt. These results provide evidence that the signal transduction of C-terminal phosphorylation in eLH/CGR plays a pivotal role in CHO-K1 cells. The cAMP level was recovered in PathHunter Parental cells expressing β-arrestin. We suggest that the signal transduction of the C-terminal region phosphorylation sites is remarkably different depending on the cells expressing β-arrestin in CHO-K1 cells.

Biological Functions of the COOH-Terminal Amino Acids of the $\alpha$-Subunit of Tethered Equine Chorionic Gonadotropin

  • Jeoung, Youn-Hee;Yoon, Jong-Taek;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.34 no.1
    • /
    • pp.47-53
    • /
    • 2010
  • Glycoprotein hormones have a common $\alpha$-subunit that is involved in the signaling pathway together with G protein, adenylcyclase and cAMP induction; however, it is an unclear how this common structure is related to hormonal action. To determine the biological functions of the COOH-terminal amino acids in the $\alpha$-subunit of these glycoprotein hormones, a tethered-molecule was constructed by fusing the $NH_2$-terminus of the $\alpha$-subunit to the COOH-terminus of the $\beta$-subunit of equine chorionic gonadotropin (eCG). The following deletion mutants were created by PCR; Ile was inserted at position 96 to form ${\Delta}96$, Lys was substituted at position 95 to form ${\Delta}95$, His was inserted at position 93 to form ${\Delta}93$ and Tyr was substituted at position 87 to form ${\Delta}87$. Each mutant was transfected into CHO-K1 cells. Tethered-wt eCG, and ${\Delta}96$, ${\Delta}95$, and ${\Delta}93$ mutants were efficiently secreted into the medium but the ${\Delta}87$ mutant was not secreted. Interestingly, the RT-PCR, real-time PCR, and northern blot analyses confirmed that the RNA was transcribed in the ${\Delta}87$ mutant. However, the ${\Delta}87$ mutant protein was not detected in the medium or the intracellular fraction of the cell lysates. The LH- and FSH-like activities of the recombinant proteins were assayed in terms of cAMP production using rat LH/CG and rat FSH receptors. The metabolic clearance rate (MCR) was determined by injecting rec-eCG (2 IU) into the tail vein. The ${\Delta}95$ and ${\Delta}93$ mutants were completely inactive in both the LH- and FSH-like activity assays. The ${\Delta}96$ mutant showed slight activity in the LH-like activity assay. In comparison to the wild type, the activity of the ${\Delta}96$ mutant in the FSH-like activity assay was the highest among all the mutants. The MCR assay in which rec-eCG was injected showed a peak at 10 min in all the treatment groups, which disappeared 4 h after injection. These results imply a direct interaction between the receptor and the COOH-terminal region of the a-subunit. The data also reveal a significant difference in the mechanism by which the eCG hormone interacts with the rLH and rFSH receptors. The COOH-terminal region of the $\alpha$-subunit is very important for the secretion and functioning of this hormone.

Functional characterization of naturally-occurring constitutively activating/inactivating mutations in equine follicle-stimulating hormone receptor

  • Byambaragchaa, Munkhzaya;Ahn, Tae-Young;Choi, Seung-Hee;Kang, Myung-Hwa;Min, Kwan-Sik
    • Animal Bioscience
    • /
    • v.35 no.3
    • /
    • pp.399-409
    • /
    • 2022
  • Objective: Follicle-stimulating hormone (FSH) is the central hormone involved in mammalian reproduction, maturation at puberty, and gamete production that mediates its function by control of follicle growth and function. The present study investigated the mutations involved in the regulation of FSH receptor (FSHR) activation. Methods: We analyzed seven naturally-occurring mutations that were previously reported in human FSHR (hFSHR), in the context of equine FSHR (eFSHR); these include one constitutively activation variant, one allelic variant, and five inactivating variants. These mutations were introduced into wild-type eFSHR (eFSHR-wt) sequence to generate mutants that were designated as eFSHR-D566G, -A306T, -A189V, -N191I, -R572C, -A574V, and -R633H. Mutants were transfected into PathHunter EA-parental CHO-K1 cells expressing β-arrestin. The biological function of mutants was analyzed by quantitating cAMP accumulation in cells incubated with increasing concentrations of FSH. Results: Cells expressing eFSHR-D566G exhibited an 8.6-fold increase in basal cAMP response, as compared to that in eFSHR-wt. The allelic variation mutant eFSHR-A306T was not found to affect the basal cAMP response or half maximal effective concentration (EC50) levels. On the other hand, eFSHR-D566G and eFSHR-A306T displayed a 1.5- and 1.4-fold increase in the maximal response, respectively. Signal transduction was found to be completely impaired in case of the inactivating mutants eFSHR-A189V, -R572C, and -A574V. When compared with eFSHR-wt, eFSHR-N191I displayed a 5.4-fold decrease in the EC50 levels (3,910 ng/mL) and a 2.3-fold decrease in the maximal response. In contrast, cells expressing eFSHR-R633H displayed in a similar manner to that of the cells expressing the eFSHR-wt on signal transduction and maximal response. Conclusion: The activating mutant eFSHR-D566G greatly enhanced the signal transduction in response to FSH, in the absence of agonist treatment. We suggest that the state of activation of the eFSHR can modulate its basal cAMP accumulation.

Roles of the Residues Lys115 and Tyr116 in the Binding of an Allosteric Inhibitor AMP to Pea Cytosolic Fructose-1,6-bisphosphatase

  • Jang, Hye-Kyung;Cho, Man-Ho;Kwon, Yong-Kook;Bhoo, Seong-Hee;Jeon, Jong-Seong;Hahn, Tae-Ryong
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.45-49
    • /
    • 2008
  • Cytosolic fructose-1,6-bisphosphatase (cFBPase) in plants is a key regulatory enzyme in the photosynthetic sucrose biosynthesis. Plant cFBPases, like the mammalian FBPases, are inhibited by adenosine 5'-monophosphate (AMP) and fructose-2,6-bisphosphate (Fru-2,6-$P_2$). In the mammalian FBPases, Lys112 and Tyr113 play important roles in the AMP binding. To understand roles of the corresponding residues, Lys115 and Tyr116, in pea cFBPase, the mutant cFBPases were generated by site-directed mutagenesis. The alterations of Lys115 to Gin and Tyr116 to Phe displayed small changes in $K_m$ and $K_i$ for Fru-2,6-$P_2$, indicating that the mutation causes minor effects on the enzyme catalysis and Fru-2,6-$P_2$ binding, whereas resulted in higher than 500-fold increase of $[AMP]_{0.5}$ compared with that of the wild-type enzyme. Results indicate the residues Lys115 and Tyr116 play important roles in the binding of AMP to the allosteric site of the pea cFBPase.

NMR Signal Assignments of Human Adenylate Kinase 1 (hAK1) and its R138A Mutant (hAK1R138A)

  • Kim, Gilhoon;Chang, Hwanbong;Won, Hoshik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.2
    • /
    • pp.56-60
    • /
    • 2016
  • Adenylate kinase (AK) enzyme which acts as the catalyst of reversible high energy phosphorylation reaction between ATP and AMP which associate with energetic metabolism and nucleic acid synthesis and signal transmission. This enzyme has three distinct domains: Core, AMP binding domain (AMPbd) and Lid domain (LID). The primary role of AMPbd and LID is associated with conformational changes due to flexibility of two domains. Three dimensional structure of human AK1 has not been confirmed and various mutation experiments have been done to determine the active sites. In this study, AK1R138A which is changed arginine[138] of LID domain with alanine[138] was made and conducted with NMR experiments, backbone dynamics analysis and mo-lecular docking dynamic simulation to find the cause of structural change and substrate binding site. Synthetic human muscle type adenylate kinase 1 (hAK1) and its mutant (AK1R138A) were re-combinded with E. coli and expressed in M9 cell. Expressed proteins were purified and finally gained at 0.520 mM hAK1 and 0.252 mM AK1R138A. Multinuclear multidimensional NMR experiments including HNCA, HN(CO)CA, were conducted for amino acid sequence analysis and signal assignments of $^1H-^{15}N$ HSQC spectrum. Our chemical shift perturbation data is shown LID domain residues and around alanine[138] and per-turbation value(0.22ppm) of valine[179] is consid-ered as inter-communication effect with LID domain and the structural change between hAK1 and AK1R138A.

The Gene fpk1, Encoding a cAMP-dependent Protein Kinase Catalytic Subunit Homolog, is Required for Hyphal Growth, Spore Germination, and Plant Infection in Fusarium verticillioides

  • Pei-Bao, Zhao;Ren, Ai-Zhi;Xu, Hou-Juan;Li, Duo-Chuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.208-216
    • /
    • 2010
  • Fusarium verticillioides is an important pathogen of maize, being responsible for ear rots, stalk rots, and seedling blight worldwide. During the past decade, F. verticillioides has caused several severe epidemics of maize seedling blight in many areas of China, which lead to significant losses. In order to understand the molecular mechanisms regulating fungal development and pathogenicity in this pathogen, we isolated and characterized the gene fpk1 (GenBank Accession No. EF405959) encoding a homolog of the cAMP-dependent protein kinase catalytic subunit, which included a 1,854-bp DNA sequence from ATG to TAA, with a 1,680-bp coding region, and three introns (lengths: 66 bp, 54 bp, and 54 bp), and the predicated protein precursor had 559 aa. The mutant ${\Delta}fpk1$, which was disrupted of the fpkl gene, showed reduced vegetative growth, fewer and shorter aerial mycelia, strongly impaired conidiation, and reduced spore germination rate. After germinating, the fresh hypha was stubby and lacking of branch. When inoculated in susceptible maize varieties, the infection of the mutant ${\Delta}fpk1$ was delayed and the infection efficiency was reduced compared with that of the wild-type strain. AU this indicated that gene fpk1 participated in hyphal growth, conidiophore production, spore germination, and virulence in F. verticillioides.

Regulation of Hepatic Gluconeogenesis by Nuclear Receptor Coactivator 6

  • Oh, Gyun-Sik;Kim, Si-Ryong;Lee, Eun-Sook;Yoon, Jin;Shin, Min-Kyung;Ryu, Hyeon Kyoung;Kim, Dong Seop;Kim, Seung-Whan
    • Molecules and Cells
    • /
    • v.45 no.4
    • /
    • pp.180-192
    • /
    • 2022
  • Nuclear receptor coactivator 6 (NCOA6) is a transcriptional coactivator of nuclear receptors and other transcription factors. A general Ncoa6 knockout mouse was previously shown to be embryonic lethal, but we here generated liver-specific Ncoa6 knockout (Ncoa6 LKO) mice to investigate the metabolic function of NCOA6 in the liver. These Ncoa6 LKO mice exhibited similar blood glucose and insulin levels to wild type but showed improvements in glucose tolerance, insulin sensitivity, and pyruvate tolerance. The decrease in glucose production from pyruvate in these LKO mice was consistent with the abrogation of the fasting-stimulated induction of gluconeogenic genes, phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose-6-phosphatase (G6pc). The forskolin-stimulated inductions of Pck1 and G6pc were also dramatically reduced in primary hepatocytes isolated from Ncoa6 LKO mice, whereas the expression levels of other gluconeogenic gene regulators, including cAMP response element binding protein (Creb), forkhead box protein O1 and peroxisome proliferator-activated receptor γ coactivator 1α, were unaltered in the LKO mouse livers. CREB phosphorylation via fasting or forskolin stimulation was normal in the livers and primary hepatocytes of the LKO mice. Notably, it was observed that CREB interacts with NCOA6. The transcriptional activity of CREB was found to be enhanced by NCOA6 in the context of Pck1 and G6pc promoters. NCOA6-dependent augmentation was abolished in cAMP response element (CRE) mutant promoters of the Pck1 and G6pc genes. Our present results suggest that NCOA6 regulates hepatic gluconeogenesis by modulating glucagon/cAMP-dependent gluconeogenic gene transcription through an interaction with CREB.

Invesigation of Functional Roles of a Protein Kinase in a Fungal Plant Pathogen, Magnaporthe oryzae

  • Han, Joon-Hee;Shin, Jong-Hwan;Kim, Kyoung Su
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.43-43
    • /
    • 2014
  • The rice blast disease caused by of Magnaporthe oryzae is one of the most destructive diseases of rice. By the microarray analysis, we profiled expression changes of genes during conidiation and found out many putative genes that are up-regulated. Among those, we first selected MGG_06399 encoding a dual-specificity tyrosine-regulated protein kinase (DYRK), homologous to YAK1 in yeast. To investigate functional roles of MoYAK1, We made ${\Delta}Moyak1$ mutants by homology dependent gene replacement. The deletion mutant showed a remarkable reduction in conidiation and produced abnormally shaped conidia smaller than those of wild type. The conidia form ${\Delta}Moyak1$ were able to develop a germ tube, but failed to form apppressoria on a hydrophobic coverslip. The ${\Delta}Moyak1$ formed appressria on a hydrophobic cover slip when exogenous cAMP was induced, but the appressoria shape was abnormal. The ${\Delta}Moyak1$ also formed appressoria abberent in shape on onion epidermis and rice sheaths and failed to penetrate the surface of the plants. These data indicate that MoYAK1 is associated with cAMP/PKA pathway and important for conidiation, appressorial formation and pathogenic development in Magnaporthe oryzae. Detailed characterization of MoYAK1 will be presented.

  • PDF

ATP-Inhibited Ribonuclease of Bacillus subtilis (Bacillus subtilis ATP 조해(阻害) Ribonuclease에 관한 연구)

  • Lee, Taik-Soo
    • Applied Biological Chemistry
    • /
    • v.18 no.3
    • /
    • pp.167-176
    • /
    • 1975
  • As a study on the ATP-inhibited ribonuclease of Bacillus subtilis the screening work for obtaining the ATP-inhibited ribonuclease negative mutant were carried out. And mutant strain was selected by the treatment of N-methyl-N'-nitro-N-nitrosoguanidine (NTG). For the selected strain the enzyme purification and some physiological properties were examined and the results obtained were as follows. 1. Among tested 1817 strains with the treatment of NTG, 101 strain was selected as a mutant strain. 2. ATP-inhibited ribonuclease was tentatively purified by several independent column chromatography. The results with Sephadex G-75 column were 30 times purification, 99% recovery, and 20 times purification, 98% recovery, respectively. 3. ATP-inhibited ribonuclease was purified by 60 times through acid treatment, ammonium fractionation, and two successive chromatography. 4. The purified ribonuclease were shown to be effectively concentrated in robonnclease content and to have reduced numbers of protein band on Disc electrophoresis. 5. This enzyme degraded single-stranded RNA to 2',3'-cyclic AMP, 2',3'-cyclic CMP, 2',3,-cyclic GMP, 2',3'-cyclic UMP and some unknown intermediates. The enzyme could not split double-stranded RNA.

  • PDF

GST2 is Required for Nitrogen Starvation-Induced Filamentous Growth in Candida albicans

  • Lee, So-Hyoung;Chung, Soon-Chun;Shin, Jongheon;Oh, Ki-Bong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1207-1215
    • /
    • 2014
  • Candida albicans, the major human fungal pathogen, undergoes morphological transition from the budding yeast form to filamentous growth in response to nitrogen starvation. In this study, we identified a new function of GST2, whose expression was required for filamentous growth of C. albicans under nitrogen-limiting conditions. The Gst2p showed Gst activity and required response to oxidative stress. The ${\Delta}gst2$ mutant displayed predominantly yeast phase growth in low ammonium media. Such morphological defect of ${\Delta}gst2$ mutants was not rescued by overexpression of Mep2p, Cph1p, or Efg1p, but was rescued by either overexpression of a hyperactive $RAS1^{G13V}$ allele or through exogenous addition of cyclic AMP. In addition, the ${\Delta}gst2$ mutants had lower levels of RAS1 transcripts than wild-type cells under conditions of nitrogen starvation. These results were consistent with the Ras1-cAMP pathway as a possible downstream target of Gst2p. These findings suggest that Gst2p is a significant component of nitrogen starvation-induced filamentation in C. albicans.