• Title/Summary/Keyword: amount of strengthening

Search Result 217, Processing Time 0.021 seconds

Analysis of Strengthening Veriables for Strengthened Bridge Decks by Externally Bonded Sheet (보강판으로 외부부착 보강된 교량 바닥판의 성능향상을 위한 변수 해석)

  • 심종성;오흥섭
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.556-565
    • /
    • 2002
  • The concrete bridge decks on the main girder will usually develop initial cracks in the longitudinal or the transverse direction due to dry shrinkage and temperature change, and as the bridge decks age the crack will gradually develop in different directions due to repeated cyclic loads. The strengthening direction of the concrete bridge deck is a very important factor in improving proper structural behavior. Therefore, in this study, theoretical analyses of strengthened bridge decks were performed using the nonlinear finite element method. To improve the accuracy of the analytical result, boundary conditions and material property of strengthening material was simulated by laboratory condition and test results, respectively. The effect of the strengthening direction and the amount of strengthening material were estimated and compared to the experimental results. The efficiency of the strengthened bridge decks by strengthening variables such as the amount, width and thickness of CFS was observed.

An Experimental Study on Shear Strengthening Effect of I-girder using Externally Bonded CFRP Strips (외부 부착 탄소섬유를 사용한 I형 보의 전단 보강 효과 연구)

  • Kim, Changhyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.108-113
    • /
    • 2018
  • Researches on strengthening and rehabilitation methods are being widely conducted due to the deterioration of existing concrete structures. Use of externally bonded Carbon Fiber Reinforced Polymers (CFRP) strips for the rehabilitation is a cost-effective and time-saving method. Generally, the CFRP layout for the shear strengthening was a uni-directional layout. Many researches have focused on the variables of the uni-directional CFRP layout such as the amount of material, angle, and spacing. Pilot tests indicated that the effective confinement of the concrete member can be provided with the bi-directional CFRP layout than the uni-directional layout. Therefore, the test was carried out after the uni- and bi-directional strengthening work using the same amount of CFRP material. CFRP anchors were installed to prevent unexpected premature CFRP delamination failure before reaching CFRP fracture strain. The effectiveness of the CFRP anchor and bi-directional CFRP layout for shear strengthening was verified based on the principal tensile strain contours.

Flexural strengthening of continuous unbonded post-tensioned concrete beams with end-anchored CFRP laminates

  • Ghasemi, Saeed;Maghsoudi, Ali A.;Bengar, Habib A.;Ronagh, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1083-1104
    • /
    • 2015
  • This paper provides the results of an experimental investigation into the flexural behavior of continuous two-span unbonded post-tensioned high strength concrete (HSC) beams, strengthened by end-anchored CFRP laminates of different configurations in the hogging region. Implementing two different configurations of end-anchorage systems consisting of steel plates and bolts and carefully monitoring the development of strains throughout the load history using sufficiently large number of strain gauges, the response of beams including the observed crack propagations, beam deflection, modes of failure, capacity enhancement at service and ultimate and the amount of moment redistribution are measured, presented and discussed. The study is appropriate in the sense that it covers the more commonly occurring two span beams instead of the simply supported beams investigated by others. The experiments reconfirmed the finding of others that proper installation of composite strengthening system is most important in the quality of the bond which is essential for the internal transfer of forces. It was also found that for the tested two span continuous beams, the capacity enhancement is more pronounced at the serviceability level than the ultimate. This is an important finding as the design of these beams is mostly governed by the serviceability limit state signifying the appropriateness of the suggested strengthening method. The paper provides quantitative data on the amount of this capacity enhancement.

Flexural Strengthening Effect of Carbon Fiber Sheet Considering Different Status of Damages in RC Beams (RC 보의 손상 상태를 고려한 탄소섬유시트의 휨보강 효과)

  • Park, Sung-Soo;Jo, Su-Je
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.157-167
    • /
    • 2002
  • In most cases, quantity of reinforcement is determined without regard to the difference of initial strain, and status of damages when calculated the strengthening in flexure at beams. Thus, the purpose of this study is to investigate the flexural strengthening efficiency and behavior of RC beams strengthened with carbon fiber sheets(CFS) considering different status of damages. in this paper, a nonlinear analysis program considering rip-off strength and residual stress of steel bars and concrete in different status of damages is developed to predict the flexural behavior of CFS strengthened beams. Rip-off strength equation is obtained by modifying moment of inertia in the Robert's equation. And conformed developed nonlinear analysis program in variable of strengthening CFS amount and status of damages(initial, case1, case2, case3) and tension reinforcement ratio(0.2~1.0%).

An Experimental Study on Beam Strengthening of RC Buildings with Expanded Steel Plates in Rural Area (농어촌 지역 RC건축물 보의 철판망 보강에 관한 실험 연구)

  • Kim, Yoon IL;Hong, Si Hyun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.7 no.1
    • /
    • pp.121-128
    • /
    • 2005
  • This experimental study was conducted to investigate beam strengthening of RC buildings with expended steel plate(ESP) in rural area. Nine test specimens were manufactured, whose variables were tensile steel ratio and the amount and the shape of expanded steel plate. The test results indicated that strengthened beams with ESP showed the improvement of flexural strength of 50%~90%, and the beam strengthening of U type was excellent for shear reinforcement as well as flexural reinforcement, more over, the honeycomb shape of ESP and anchor bolts for development of ESP were very effective.

  • PDF

Behavior and Ductility of Reinforced Concrete Beams Strengthened by CFRP (CFRP가 보강된 철근콘크리트 보의 거동과 연성)

  • Kim, Jin-Yul;Kim, Kwang-Soo;Park, Sun-Kyu;Lee, Young-Jae
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.225-231
    • /
    • 2007
  • In the recent construction industry, FRP is highly interesting in strengthening members of structures because it has superior material properties. This paper is an experimental study on the structural behavior of reinforced concrete beam when in using various amount of CFRP and the ductility of beams using various type of CFRP. In the experiment, when it makes an experiment using various amount of CFRP, strengthening width is more efficient than strengthening layer. The failure of CFRP strengthened beams presented brittle modes with having flexural failures. Also, It represented that most of beams classify brittle failure in the side of energy ratio. Energy ratio of CFRP sheet comparing with CFRP plate exceeds overall 50% and it represents about 70% in case of beams without strengthening layer.

Performance of Reinforced Concrete Beams Strengthened with Bi-directional CFRP Strips (이 방향 탄소섬유 스트립을 사용하여 보강된 콘크리트 보의 거동에 대한 연구)

  • Kim, Changhyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.30-36
    • /
    • 2018
  • Researches on strengthening and rehabilitation are important since structural capacity is degraded by deterioration or damage of structural members. An effective strengthening scheme such as an externally bonded Carbon Fiber Reinforced Polymers (CFRP) can improve the structural performance of a concrete structure in a cost-effective way. Therefore, many experimental studies on strengthening methods have been widely carried out. In regards to the shear strengthening of a concrete beam, variables of the experimental studies were the amount of CFRP, the angle of the strip, the width of the strip, and the interaction between the materials. However, there are insufficient researches on bi-directional CFRP layout compared to the previous researches. In this study, a total of ten concrete beams were designed and tested to evaluate the shear strengthening effect using CFRP strips. The effectiveness of strengthening was investigated based on the shear contribution of materials, strain distribution of stirrup, and the maximum shear capacity of specimens.

The High-Strengthing of Concrete with Admixture -On the Crushed Stone Concrete (혼화재에 의한 콘크리트의 고강도화에 관한 실험 연구(I) -쇄석 콘크리트를 대상으로-)

  • 김화중;김태섭;이용철;한종훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.113-117
    • /
    • 1993
  • The purpose of this study is to raise the strength of concrete with admixture. The natural zeolites and mud stone, abundant in this country, were used as admixture for high-strengthening of concrete. Proper workability was gained by using the superplasticizer. The optimum replacement ratio of zeolite mud stone was 10% on unit -cement amount. At these optimum replacement ratio, the strength development over the plain concrete was 34% for zeolite and 16% for mud stone. Through this study, we concluded the natural zeolite and mud stone were adequate admixture for the high-strengthening of concrete.

  • PDF

Theoretical Assessment of Limit Strengthening Ratio of Bridge Deck Based on the Failure Characteristic (교량 바닥판의 파괴형태를 고려한 임계보강재비의 이론적 산정)

  • 심종성;오홍섭;유재명
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.110-117
    • /
    • 2002
  • In a strengthened bridge deck which received increased service loads, failure patterns of bridge deck vary depending on deck thickness, compressive strength of concrete, yielding strength of reinforcement, reinforcement ratio and additional strengthening ratio. General failure pattern that is most commonly reported as punching shear failure after the main rebar yields, followed by yielding of distributing rebar. In this paper, by Proposing a limit to the amount of strengthening material, a brittle failure can be prevented and a ductile failure mode similar to that developed in unstrengthened deck is derived. In order to calculated the limit strengthening ratio, the yield line theory and previously proposed plastic punching shear model have been used

Experimental shear strengthening of GFRC beams without stirrups using innovative techniques

  • Hany, Marwa;Makhlouf, Mohamed H.;Ismail, Gamal;Debaiky, Ahmed S.
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.415-433
    • /
    • 2022
  • Eighteen (18) (120×300×2200 mm) beams were prepared and tested to evaluate the shear strength of Glass Fiber Reinforced Concrete (GFRC) beams with no shear reinforcement, and evaluate the effectiveness of various innovative strengthening systems to increase the shear capacity of the GFRC beams. The test variables are the amount of discrete glass fiber (0.0, 0.6, and 1.2% by volume of concrete) and the type of longitudinal reinforcement bars (steel or GFRP), the strengthening systems (externally bonded (EB) sheet, side near-surface mounted (SNSM) bars, or the two together), strengthening material (GFRP or steel) links, different configurations of NSM GFRP bars (side bonded links, full wrapped stirrups, side C-shaped stirrups, and side bent bars), link spacing, link inclination angle, and the number of bent bars. The experimental results showed that adding the discrete glass fiber to the concrete by 0.6%, and 1.2% enhanced the shear strength by 18.5% and 28%, respectively in addition to enhancing the ductility. The results testified the efficiency of different strengthening systems, where it is enhanced the shear capacity by a ratio of 28.4% to 120%, and that is a significant improvement. Providing SNSM bent bars with strips as a new strengthening technique exhibited better shear performance in terms of crack propagation, and improved shear capacity and ductility compared to other strengthening techniques. Based on the experimental shear behavior, an analytical study, which allows the estimation of the shear capacity of the strengthened beams, was proposed, the results of the experimental and analytical study were comparable by a ratio of 0.91 to 1.15.