• Title/Summary/Keyword: amorphous silicon

Search Result 791, Processing Time 0.029 seconds

X-Ray Emission Spectroscopic Analysis for Crystallized Amorphous Silicon Induced by Excimer Laser Annealing

  • John, Young-Min;Kim, Dong-Hwan;Cho, Woon-Jo;Lee, Seok;Kurmaev, E.-Z.
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.1-4
    • /
    • 2001
  • The results of investigating $SiL_{2,3}$/ X-ray emission valence spectra of amorphous silicon films irradiated by excimer laser are presented. It is found that laser annealing leads to crystallization of amorphous silicon films and the crystallinity increases with the laser energy density from 250 to 400 mJ/$\textrm{cm}^2$. The vertical structure of the film is investigated by changing the accelerating voltage on the X-ray tube, and the chemical and structural state of Si$_3$N$_4$ buffer layer is found not to be changed by the excimer laser treatment.

Operating Temperature Characteristics of Amorphous Silicon Solar Cells (비정질(非晶質) 실리콘 태양전지(太陽電池)의 동작온도(動作溫度) 특성(特性))

  • Han, Min-Koo
    • Solar Energy
    • /
    • v.7 no.1
    • /
    • pp.30-34
    • /
    • 1987
  • Experimental results are discussed concerning temperature effects from $25^{\circ}C$ to $100^{\circ}C$ on amorphous silicon solar cells. N-I-P hydrogenated amorphous silicon solar cells are fabricated on stainless steel and indium tin oxide glass substrates. The open circuit voltage, short circuit current, fill factor and conversion efficiency have been measured under AM1 condition as a function of temperature. The open circuit voltage decreased by $2.6mV/^{\circ}C$ while the short circuit current increases with increased temperature. The conversion efficiency is almost independent of temperature which is contrary to widely using single crystalline solar cells of which efficiencies decrease with increasing temperature.

  • PDF

Analysis of Electrical Characteristics of Amorphous Silicon Thin Film Photovoltaic Module Exposed Outdoor (옥외 설치된 비정질 실리콘 박막태양전지모듈의 전기적 출력 특성 분석)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.4
    • /
    • pp.62-67
    • /
    • 2008
  • In this study, we analyze the electrical characteristics of amorphous silicon thin film photovoltaic module which are installed about 5 years ago. Four modules from PV system are extracted and measured the maximum power change ratio using solar simulator(Class A). Also, infrared camera is used to get thermal distribution characteristics of system. The external appearance change is compared with initial module by naked eye examination. Through this experiment, 31% maximum output power drop is observed. The detail description is specified as the following paper.

DETERMINATION OF THERMAL CONDUCTIVITY FROM TRANSIENT REFLECTIVITY MEASUREMENTS OF AMOPHOUS SILICON THIN FILMS (A-Si 박막의 반사율변화에 따른 열전달계수 결정)

  • Ryu, Ji-Hyung;Kim, Hyang-Jung;Moon, Seung-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2453-2458
    • /
    • 2007
  • The performance of polysilicon thin film transistor (p-Si TFT) has an important role in the operation of active matrix liquid crystal displays. To fabricate the p-Si TFTs that have uniform characteristics, understanding of the recrystallization mechanism of silicon is crucial. Especially, the analysis of the transient temperature variation and the liquid-solid interface motion is required to find the mechanism. The thermal conductivity is one of the most important parameters to understand the mechanism. In this work, a KrF eximer laser beam was irradiated to amorphous silicon thin films. We measured the transient reflectivity at the wavelength of 633 nm. We carried out the numerical simulation of one dimension conduction equation so that we determined the most well-fitted thermal conductivity by comparing the numerically obtained transient reflectivity with the experimentally measured one. The experimentally determined thermal conductivity of amorphous silicon thin films is 1.5 W/mK.

  • PDF

Surface passivation study of a-Si:H/c-Si heterojunction solar cells using VHF-CVD (VHF-CVD를 이용한 a-Si:H/c-Si 이종접합태양전지 표면 패시배이션 연구)

  • Song, JunYong;Jeong, Daeyoung;Kim, Kyoung Min;Park, Joo Hyung;Song, Jinsoo;Kim, Donghwan;Lee, JeongChul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.128.1-128.1
    • /
    • 2011
  • In amorphous silicon and crystalline silicon(a-Si:H/c-Si) heterojuction solar cells, intrinsic hydrogenated amorphous silicon(a-Si:H) films play an important role to passivate the crystalline silicon wafer surfaces. We have studied the correlation between the surface passivation quality and nature of the Si-H bonding at the a-Si:H/c-Si interface. The samples were obtained by VHF-CVD under different deposition conditions. The passivation quality and analysis of all structures studied was performed by means of quasi steady state photoconductance(QSSPC) methods and fourier transform infrared spectrometer(FTIR) measurements respectively.

  • PDF

Deposition of $\alpha$-Si:H thin films by PECVD method (플라즈마 화학증착법을 이용한 $\alpha$-Si:H박막의 제조)

  • 정병후;문대규;임호빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.63-67
    • /
    • 1991
  • Amorphous silicon films were deposited on glass, [100] single crystal silicon wafer with thermally grown silicon dioxide, and [100] silicon wafer substrates by Plasma Enhanced Chemical Vapor Deposition(with argon diluted silane source gas). Growth rate, UV optical band edge, and the hydrogen quantity in the amorphous silicon films have been investigated as a function of the preparation conditions by measuring film thickness, UV-absorbency, and FT-IR transmittance. The growth rate of the ${\alpha}$-Si:H films increases with increasing substrate temperture, flow rate and R.F. power density. The UV optical band edge shifts to blue with the increases in the deposition pressure. Increasing substrate temperature shifts the UV optical band edge of the films to red. Hydrogen quantity in the ${\alpha}$-Si:H films increases with an increases in the R.F. powr and decreases with an increase in the substrate temperature.

Electrochemical Characteristics of Si/Mo Multilayer Anode for Lithium-Ion Batteries (리튬 이온 전지용 Si/Mo 다층박막 음극의 전기화학적 특성)

  • Park, Jong-Wan;Ascencio Jorge A.
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.297-301
    • /
    • 2006
  • Si/Mo multilayer anode consisting of active/inactive material was prepared using rf/dc magnetron sputtering. Molybdenum acts as a buffer against the volume change of the Silicon. Multilayer deposited on RT (reversible treatment) copper foil current collector to enhance adhesion between Silicon and copper foil. Deposited Silicon was identified as an amorphous. Amorphous has a relatively open structure than crystal structure, thus prevents the lattice expansion and has many diffusion paths of Li ion. When deposited time of Silicon and Molybdenum is 30 second and 2 second respectably, electrode has more capacity and good cycle stability. A 3000 nm thick multilayer was maintained 99% of the initial capacity (1624 $mAhg^{-1}$) after 100 cycles. As the increase of the multilayer thickness (4500 nm, 6000 nm), Si/Mo mutilayer anodes show aggravation cycle stability.

Preparation and Characterization of Silicon Carbide Nanofiber (탄화규소 나노섬유의 제조 및 물성)

  • 신현익;송현종;김명수;임연수;이재춘
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.376-380
    • /
    • 2000
  • Carbon nanofibers with an average diameter of 100nm were reacted with SiO vapor generated from a mixture of Si and SiO2 to produce silicon carbide nanofibers at temperature ranging 1200∼1500$^{\circ}C$ under vacuum. The nanofiber reacted at 1200$^{\circ}C$ for two hours consisted of silicon carbide with an average crystallite size of 10-20nm, amorphous silica and a significant amount of unreacted carbon. The surface area of silicon carbide nanofiber, obtained after removal of amorphous silica and unreacted carbon from converted carbon nanofibers at 1200$^{\circ}C$, was as high as 150㎡/g. With increasing reaction temperature to 1500$^{\circ}C$, the surface area was decreased to 14㎡/g. Growth of SiC crystallite size with increasing conversion temperature of carbon nanofiber was confirmed from Scherrer formula using the (111) diffraction line and TEM images of converted carbon nanofibers.

  • PDF

A Study on the Nano-Deformation Behaviors of Single Crystal Silicon and Amorphous Borosilicate Considering the Mechanochemical Reaction (기계화학적 반응을 고려한 단결정 실리콘과 비정질 보로실리케이트의 나노 변형 거동에 관한 연구)

  • 윤성원;신용래;강충길
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.623-630
    • /
    • 2003
  • Nanomachining process, static nanoplowing, is one of the most promising lithographic technologies in terms of the low cost of operation and variety of workable materials. In nanomachining process, chemical effects are more dominant factor compared with those by physical deformation or fracture. For example, during the nanoscratch on a silicon surface in the atmosphere, micro protuberances are formed due to the mechanochemical reaction between diamond tip and the surfaces. On the contrary, in case of chemically stable materials, such as ceramic or glass, surface protuberances are not formed. The purpose of this study is to understand effects of the mechanochemical reaction between tip and surfaces on deformation behaviors of hard-brittle materials. Nanometerscale elasoplastic deformation behavior of single crystal silicon (100) was characterized with micro protuberance phenomena, and compared with that of borosilicate (Pyrex glass 7740). In addition, effects of the silicon protuberances on nanoscratch test results were discussed.

Fabrication and Properties of pn Diodes with Antimony-doped n-type Si Thin Film Structures on p-type Si (100) Substrates (p형 Si(100) 기판 상에 안티몬 도핑된 n형 Si박막 구조를 갖는 pn 다이오드 제작 및 특성)

  • Kim, Kwang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.39-43
    • /
    • 2017
  • It was confirmed that the silicon thin films fabricated on the p-Si (100) substrates by using DIPAS (DiIsoPropylAminoSilane) and TDMA-Sb (Tris-DiMethylAminoAntimony) sources by RPCVD method were amorphous and n-type silicon. The fabricated amorphous n-type silicon films had electron carrier concentrations and electron mobilities ranged from $6.83{\times}10^{18}cm^{-3}$ to $1.27{\times}10^{19}cm^{-3}$ and from 62 to $89cm^2/V{\cdot}s$, respectively. The ideality factor of the pn junction diode fabricated on the p-Si (100) substrate was about 1.19 and the efficiency of the fabricated pn solar cell was 10.87%.

  • PDF