• Title/Summary/Keyword: amorphous and crystalline

Search Result 782, Processing Time 0.028 seconds

IRAS 09425-6040: A Silicate Carbon Star with Crystalline Dust

  • Suh, Kyung-Won;Kwon, Young-Joo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.140.2-140.2
    • /
    • 2012
  • The silicate carbon star IRAS 09425-6040 shows very conspicuous crystalline silicate dust features and excessive emission at far infrared. To investigate properties of dusty envelopes around the object, we use radiative transfer models for axisymmetric and sphericallly symmetric dust distributions. We perform model calculations for various possible combinations of dust shells and disks with various dust species. We compare the model results with the observed spectral energy distributions (SEDs) including the IRAS, ISO, AKARI, MSX and 2MASS data. We find that a model with multiple disks of amorphous and crystalline silicate and multiple spherical shells of carbon dust can reproduce the observed SED fairly well. This supports the scenario for the origin of silicate carbon stars that oxygen-rich material was shed by mass loss when the primary star was an M giant and the O-rich material is stored in a circumbinary disk. Highly (about 75 %) crystallized forsterite dust in the disk can reproduce the conspicuous crystalline features of the ISO observational data. This object looks to have a detached silicate and H2O ice shell with a much higher mass-loss rate. It could be a remnant of the chemical transition phase. The last phase of stellar winds of O-rich materials looks to be a superwind.

  • PDF

Studies on hydrophobic drug-soluble carrier coprecitates 2

  • Shin, Sang-Chul
    • Archives of Pharmacal Research
    • /
    • v.2 no.1
    • /
    • pp.49-64
    • /
    • 1979
  • In an atempt to elucidate further physicochemical properties of furosemide-PVP coprecipitates, extensive investigations such as TLC, UV,IR, NMR, X-ray diffraction, TGA and DTA studies were carried out for the furosemide test systems. X-ray diffraction studies revealed that the pure furosemide and the furosemide contained within a physical mixture were crystalline in nature. However, there was no crystallinity evident in the 1:5 furosemide-PVP 40,000 coprecipitate system, even after standing for two years. The various ratio furosemide-PVP 40,000 coprecipitate systems revealed that the coprecipitate containing a greater amount of PVP 40,000 than that of furosemide showed a crystalline state of furosemide and that the minimum amounts of PVP to make amorphous form of furosemide was 1:1 ratio of furosemide to PVP. From the furosemide-PVP coprecipitate systems with PVP of different molecular weights of 10,000, 40,000 and 360,000, all the 1:1 ratio coprecipitates did not exhibit any crystallinity of furosemide, whereas all the 2:1 ratio coprecipitates showed a presence of crystalline furosemide. All the coprecipitated preparations with PEG 4,000 and with PEG 6,000 showed the diffraction peaks indicating the presence of crystalline furosemide. The comparison of infrared spectra of the physical mixture and the coprecipitate showed an interaction such as association between the functional groups of furosemide and PVP in the molecular level, whereas the studies by TLC, UV and NMR showed its dissociation in methanol solution. The weight losses in TGA curves showed all the same patterns. However, a little different transition form in DTA thermograms was shown between the physical mixture and the coprecipitate, indicating the different thermal property.

  • PDF

Snapshot of carrier dynamics from amorphous phase to crystal phase in Sb2Te3 thin film

  • Choi, Hyejin;Jung, Seonghoon;Ahn, Min;Yang, Won Jun;Han, Jeong Hwa;Jung, Hoon;Jeong, Kwangho;Park, Jaehun;Cho, Mann-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.139.2-139.2
    • /
    • 2016
  • Electrons and phonons in chalcogenide-based materials play are important factors in the performance of an optical data storage media and thermoelectric devices. However, the fundamental kinetics of carriers in chalcogenide materials remains controversial, and active debate continues over the mechanism responsible for carrier relaxation. In this study, we investigated ultrafast carrier dynamics in an multilayered $\{Sb(3{\AA})/Te(9{\AA})\}n$ thin film during the transition from the amorphous to the crystalline phase using optical pump terahertz probe spectroscopy (OPTP), which permits the relationship between structural phase transition and optical property transitions to be examined. Using THz-TDS, we demonstrated that optical conductance and carrier concentration change as a function of annealing temperature with a contact-free optical technique. Moreover, we observed that the topological surface state (TSS) affects the degree of enhancement of carrier lifetime, which is closely related to the degree of spin-orbit coupling (SOC). The combination of an optical technique and a proposed carrier relaxation mechanism provides a powerful tool for monitoring TSS and SOC. Consequently, the response of the amorphous phase is dominated by an electron-phonon coupling effect, while that of the crystalline structure is controlled by a Dirac surface state and SOC effects. These results are important for understanding the fundamental physics of phase change materials and for optimizing and designing materials with better performance in optoelectronic devices.

  • PDF

Carbonization Characteristics of Phenolic Resin Deteriorated by Tracking (트래킹에 의해 열화된 페놀수지의 탄화 특성)

  • 송길목;최충석;노영수;곽희로
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • This paper describes the carbonization characteristics of a phenolic resin deteriorated by tracking under the environment of a fire. In the experiment, a liquids droplet of 1[%] NaCl was dripped on the phenolic resin to cause a tracking with 110[V], 220[V] voltages applied. It can be addressed from the experimental results that when an insulator is carbonized by an external fire, its structure is amorphous. If an insulator is carbonized by electrical cause, on the other hand, its structure would be crystalline. In order to observe the surface change of the phenolic resin, the tracking process was analyzed by using SEM. In the case that the materials are carbonized under heat or fire, the exothermic peak appears around 500[$^{\circ}C$]. This is one of the important factors to determine the cause of fires. As a result of DTA, the exothermic peaks of an untreated sample showed at 333.4[$^{\circ}C$], 495.7[$^{\circ}C$] but those of a sample deteriorated by tracking appeared at 430.6[$^{\circ}C$], 457.6[$^{\circ}C$] in a voltage of 110[V], and at 456.2[$^{\circ}C$], 619.7[$^{\circ}C$] in a voltage of 220[V]. It is possible, therefore, to distinguish a virgin sample from carbonized samples(graphite) by the exothermic peak.

Studies on Silk Fibroin Membranes(I) -Structure of Silk Fibroin Membranes and Their properties- (Silk Fibroin 막에 관한 연구(I) -Silk Fibroin막의 구조특성-)

  • 최해욱;박수민;김경환
    • Textile Coloration and Finishing
    • /
    • v.6 no.1
    • /
    • pp.62-70
    • /
    • 1994
  • Silk fibroin was dissolved in 9.3 M LiBr aqueous solution at 4$0^{\circ}C$ for 1 hour. The dissolved silk fibroin was regenerated by casting the dialyzed solution into the membrane. The freshly prepared silk fibroin membrane was soluble in water and was. mainly consisted of random coil conformation. By the treatments in saturated water vapor at 3$0^{\circ}C$ and in 75% ethanolic aqueous solution (V/V), the insoluble membranes were obtained and the structure and morphology of those were investigated for the structure by means of X-ray diffraction analysis, infrared spectroscopy, thermal analysis. Rheovibron and scanning electron micrograph. Silk II type crystals were obtained by treating amorphous silk fibroin membrane in the random coil conformtion with 75% ethanol solution(V/V). Crystallization to silk II type crystals occured even after a few minutes, and a large number of silk II type crystals were formed after 30 mins. On the other and, the membrane treated in saturated water vapor was composed of the mixtures of silk I and silk II type crystals. A large number of silk I and silk II type crystals were formed after 24 hours. The micro brownian motion in the amorphous regions of silk fibroin membrane started at about 175~185$^{\circ}C$. $\alpha$ dispersion appeared at about 20$0^{\circ}C$ in the amorphous membrane, and at about 22$0^{\circ}C$ in the crystalline membrane. The crystallization of random coil conformation to silkII type crystals occured at about 215$^{\circ}C$. The surface, bottom and cross-section of the membranes were observed by scanning electrom microscope. Fine forms alike spherulites appeared at the surface of crystalline membrane.

  • PDF

Characteristics of Amorphous IZO Anode Films for Polymer OLEDs Grown by Box Cathode Sputtering (박스 캐소드 스퍼터로 성장시킨 고분자 유기발광소자용 비정질 IZO 애노드 박막의 특성)

  • Moon Jong-Min;Bae Jung-Hyeok;Jung Soon-Wook;Kim Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.552-557
    • /
    • 2006
  • Electrical, optical, surface, and structural properties of amorphous indium-zinc-oxide (a-IZO) grown by box cathode sputtering (BCS) were compared with crystalline indium-tin-oxide (c-ITO) anode films grown by conventional DC sputtering (DCS). Although x-ray diffraction plot of BCS-grown IZO film shows amorphous structure, the optical and electrical properties of a-IZO is comparable to those of c-ITO film. In particular, BCS-grown IZO films shows very smooth surface without defects such as pin hole and cracks because most of the energy of the sputtered atoms was confined in high density plasma region in box cathode gun. Furthermore polymer organic light emitting diodes (POLED) with the a-IZO anode film shows better electrical properties than that of POLED with the c-ITO anode film due to high work function and smooth surface of a-IZO. This suggested that BCS-grown a-IZO film is promising anode materials substituting conventional c-ITO anode in OLED and flexible displays.

Physicochemical Characterization and Dissolution Properties of CS-891 with Different Crystallinity

  • Lee, Woo-Young;Park, Byoung-Woo;Park, Yong-Sun
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.4
    • /
    • pp.279-285
    • /
    • 2005
  • Ground CS-891 (N-[1-(4-methoxyphenyl)-1-methylethyl]-3-oxo-4-aza-5a-androst-1-ene-$17{\beta}$-carboxamide) of poorly water soluble drug was obtained using a Heiko Seisakusho model TI-100 vibration mill, and samples with different crystallinity were prepared at mixture ratios of 10:0, 7:3, 5:5, 3:7 and 0:10 (intact;ground CS-891). Physicochemical characterizations were obtained using qualitative and quantitative X-ray diffractometry, different scanning calorimetry (DSC), scanning electron microscopy (SEM), Quantasorb surface area analyzer, and controlled atmosphere microbalance. With increase of amorphous CS-891 in mixture ratios, the intensities of X-ray diffraction peaks of crystalline CS-891 were decreased, whereas surface area, water absorption, and exothermic peaks in DSC were increased. The apparent solubility of ground CS-891 was $4.4\;{\mu}g/ml$ and the solubility of intact CS-891 was $3.1\;{\mu}g/ml$ at $37{\pm}1^{\circ}C$. The apparent precipitation rates of CS-891 in a supersaturated solution during the solubility test were increased with an increase of amorphous CS-891, and a crystalline form of CS-891 transformed from amorphous CS-891 after the solubility test was found by X-ray diffraction analysis, DSC and SEM. The dissolution profiles of CS-891 with different crystallinity at $37{\pm}1^{\circ}C$ by the USP paddle method were investigated, and the apparent dissolution rate constant of ground CS-891 was about 5.9-fold higher than that of intact CS-891. A linear relationships between the crystallinity of CS-891 and the apparent dissolution rate constant (r>0.96) were obtained.

${29}^Si$ MAS NMR Study on Quantitative Analysis of the Amorphous Phase in a $Si_3N_4$ Powder

  • Fujimori, Hirotaka;Kitahara, Hiromoto;Ioku, Koji;Goto, Seishi;Nakayasu, Tetsuo;Yamada, Tetsuo
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.155-158
    • /
    • 2000
  • NMR study has been used for measuring precise quantity of the amorphous phase in the $Si_3N_4$powder. Care must be taken to allow the $^{29}$Si nuclear spin system to fully relax between pulses in order to make the signals proportional to the number of nuclei in each phase. $^{29}$Si MAS spectrum was decomposed into the three spectra of $\alpha$-, $\beta$-, and amorphous $Si_3N_4$assuming pseudo-Voigt function. Moreover, the Rietveld analysis of the powder X-ray diffraction data was performed to measure quantity of crystalline phases as $\alpha/\beta$ ratio.

  • PDF

Formation and Thermal Properties of Amorphous Ti40Cu40Ni10Al10 Alloy by Mechanical Alloying (Mechanical Alloying에 의한 비정질 Ti40Cu40Ni10Al10 합금의 형성 및 열적특성)

  • Kim, Hyun-Goo
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.363-369
    • /
    • 2009
  • The amorphization process and the thermal properties of amorphous Ti$_{40}$Cu$_{40}$Ni$_{10}$Al$_{10}$ powder during milling by mechanical alloying were examined by X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The chemical composition of the samples was examined by an energy dispersive X-ray spectrometry (EDX) facility attached to the scanning electron microscope (SEM). The as-milled powders showed a broad peak (2$\theta$ = 42.4$^{\circ}$) with crystalline size of about 5.0 nm in the XRD patterns. The entire milling process could be divided into three different stages: agglomeration (0 < t$_m$ $\leq$ 3 h), disintegration (3 h < t$_m$ $\leq$ 20 h), and homogenization (20 h < t$_m$ $\leq$ 40 h) (t$_m$: milling time). In the DSC experiment, the peak temperature T$_p$ and crystallization temperature T$_x$ were 466.9$^{\circ}C$ and 444.3$^{\circ}C$, respectively, and the values of T$_p$, and T$_x$ increased with a heating rate (HR). The activation energies of crystallization for the as-milled powder was 291.5 kJ/mol for T$_p$.

Structural and electrical characteristics of IZO thin films with deposition temperature (증착 온도에 따른 IZO 박막의 구조적 및 전기적 특성)

  • Jun, D.G.;Lee, Y.L.;Lee, K.M.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.67-74
    • /
    • 2011
  • In this study, we have investigated the effect of the substrate temperature on the structural and the electrical characteristics of IZO thin films for the OLED (organic light emitting diodes) devices. For this purpose, IZO thin films were deposited by RF magnetron sputtering under various substrate temperature. The substrate temperature has been changed from room temperature to $400^{\circ}C$. Samples which were deposited under $250^{\circ}C$ show amorphous structure. The electrical resistivity of crystalline-IZO (c-IZO) film was higher than that of amorphous-IZO (a-IZO) film. And the electrical resistivity showed minimum value near $150^{\circ}C$ of deposition temperature. The OLED device was fabricated with different IZO substrates made by configuration of IZO/$\acute{a}$-NPD/DPVB/$Alq_3$/LiF/Al to elucidate the performance of IZO substrate. OLED devices with the amorphous-IZO (a-IZO) anode film show better current density-voltage-luminance characteristics than that of OLED devices with the commercial crystalline-ITO (c-ITO) anode film. It can be explained that very flat surface roughness and high work function of a-IZO anode film lead to more efficient hole injection by reduction of interface barrier height between anode and organic layers. This suggests that a-IZO film is a promising anode materials substituting conventional c-ITO anode in OLED devices.