Browse > Article
http://dx.doi.org/10.4150/KPMI.2009.16.5.363

Formation and Thermal Properties of Amorphous Ti40Cu40Ni10Al10 Alloy by Mechanical Alloying  

Kim, Hyun-Goo (Department of Physics Education, Chosun University)
Publication Information
Journal of Powder Materials / v.16, no.5, 2009 , pp. 363-369 More about this Journal
Abstract
The amorphization process and the thermal properties of amorphous Ti$_{40}$Cu$_{40}$Ni$_{10}$Al$_{10}$ powder during milling by mechanical alloying were examined by X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The chemical composition of the samples was examined by an energy dispersive X-ray spectrometry (EDX) facility attached to the scanning electron microscope (SEM). The as-milled powders showed a broad peak (2$\theta$ = 42.4$^{\circ}$) with crystalline size of about 5.0 nm in the XRD patterns. The entire milling process could be divided into three different stages: agglomeration (0 < t$_m$ $\leq$ 3 h), disintegration (3 h < t$_m$ $\leq$ 20 h), and homogenization (20 h < t$_m$ $\leq$ 40 h) (t$_m$: milling time). In the DSC experiment, the peak temperature T$_p$ and crystallization temperature T$_x$ were 466.9$^{\circ}C$ and 444.3$^{\circ}C$, respectively, and the values of T$_p$, and T$_x$ increased with a heating rate (HR). The activation energies of crystallization for the as-milled powder was 291.5 kJ/mol for T$_p$.
Keywords
Mechanical alloying; Amorphous Ti$_{40}$Cu$_{40}$Ni$_{10}$Al$_{10}$ powder; Crystalline size;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. C. Koch, O. B. Cavin, C. G. McKamey and J. O. Scarbrough: Appl. Phy. Lett., 43 (1973) 1017.   DOI
2 R. W. Cahn, P. Haasen and E. J. Kramer: Mater. Sci. and Tech., VCH, Weinheim (1991) 195.
3 H. G. Kim, J. Y. Park, S. Yamamuro, K. Sumiyama and K. Suzuki: Mater. Sci. Eng. A, 217/218 (1996) 269.   DOI   ScienceOn
4 R. Sundaresan, A. G. Jackson, S. Krishnamurthy and F. H. Froes: Mater. Sci. Eng., 97 (1988) 115.   DOI   ScienceOn
5 B. S. Murty, S. Ranganathan and M. Mohan Rao: Mater. Sci. Eng. A, 149 (1992) 231.   DOI   ScienceOn
6 A. Inoue, N. Nishiyama, K. Amiya, T. Zhang and T. Masumoto: Mater. Lett., 19 (1994)131.   DOI   ScienceOn
7 K. Amiya, N. Nishiyama, A. Inoue and T. Masumoto: Mater. Sci. Eng. A, 179/180 (1994) 692.   DOI   ScienceOn
8 W. H. Hall: Proc. Phys. A, 62 (1949) 741.   DOI   ScienceOn
9 C. C. Koch, O. B. Cavin, C. G. McKamey and J. O. Scarbrough: Appl. Phys. Lett., 43 (1983) 1017.   DOI
10 E. Arzt and Schult: New Materials Mechanical Alloying Techniques, DGM, Germany (1988) 3.
11 D. Roy, D. Chakravarty, R. Mitra and I. Manna: J. Alloys Comp., 460 (2008) 320.   DOI   ScienceOn
12 S. Kumaran, T. Sasikumar, R. Arockiakumar and T. Srinivasa Rao: Powder Tech., 185 (2008) 124.   DOI   ScienceOn
13 H. G. Kim and W. N. Myung: Inter. J. of Non-Equilibrium Processing, 10 (1998) 305.
14 R. B. Schwartz, R. R. Petrich and L. K. Saw: J. Non- Cryst. Solids, 76 (1985) 281.   DOI   ScienceOn
15 N. Igata, N. Urahashi, M. Sasaki and Y. Kogo: Mater. Sci. Eng. A, 370 (2004) 560.   DOI   ScienceOn
16 C. N. Saikrishna, K. V. Ramaiah and S. K. Bhaumik: Mater. Sci. Eng. A, 428 (2006) 217.   DOI   ScienceOn
17 M. E. Rabanal, A. Várez, B. Levenfeld and J. M. Torralba: J. Mater. Process. Technol., 143 (2003) 470.   DOI   ScienceOn
18 B. D. Cullity: Elements of X-ray diffraction, Addison-Wesley (1978) 284.
19 H. E. Kissinger: Anal.Chem., 29 (1957) 1702.   DOI
20 T. Zhang, A. Inoue and T. Masumoto: Mater. Sci. Eng. A, 181/182 (1994) 1423.   DOI   ScienceOn
21 T. Zhang and A. Inoue: Mater. Trans. JIM, 39 (1998) 1001.   DOI
22 H. G. Kim: SAEMULLI, 57 (2008) 427.
23 G. K. Williamson and W. H. Hall: Acta Met., 1 (1953) 22.   DOI   ScienceOn