• 제목/요약/키워드: amorphous alloys

검색결과 256건 처리시간 0.026초

비정질 합금의 중주기배열구조 및 이 구조가 소성에 미치는 역할: 분자동력학적 연구 (Medium-range Orders in Amorphous Alloys and Their Role on the Plasticity: A Molecular Dynamics Viewpoint Study)

  • 이창면;이미림;이광렬;강경한;이병주;이재철
    • 대한금속재료학회지
    • /
    • 제48권2호
    • /
    • pp.101-108
    • /
    • 2010
  • The local structural states of amorphous alloys have been depicted previously via short-range orders (SROs). However, the concept of SROs alone is inadequate and sometimes insufficient to explain the structure-property relation of the amorphous alloys. In this study, we propose new types of medium-range building structures that affect the mechanical properties, plasticity in particular. Using a combination of molecular dynamics simulations and the Voronoi tessellation method, we demonstrate a three-dimensional configuration of icosahedral medium-range orders (I-MROs) and elucidate how these icosahedral orders evolve by the application of shear deformation. It was observed that the structural stability of the icosahedral orders relies largely on how they are linked via percolation and this linking is explained in detail.

급속응고된 비정질 Zr-Be 합금 용가재를 이용한 Zircaloy-4의 브레이징 특성 (Brazing Characteristics of Zircaloy-4 Using Rapidly Solidified Amorphous Zr-Be Alloy Filler Metals)

  • 김상호;고진현;박춘호;김성규
    • 한국재료학회지
    • /
    • 제12권2호
    • /
    • pp.140-145
    • /
    • 2002
  • This study was conducted to investigate the brazing characteristics between Zircaloy-4 nuclear fuel cladding tubes and bearing pads with filler metals of amorphous $Zr_{1-x}Be_x$(0.3$\leq$x$\leq$0.5) binary alloy, in which they were produced in the ribbon form by the melt-spinning metod. The crystallization behavior, stability, hardness and micro-structure of brazed zone were examined by X-ray diffraction, differential scanning calorimetry, micro-Vickers hardness test, optical microscopy, and transmission electron microscopy. $Zr_{1-x}Be_x$(0.3$\leq$x$\leq$0.4) amorphous alloys were crystallized to $\alpha$-Zr with increasing the temperature, and the rest were transformed to ZrBe$_2$at higher temperatures. On the other hand, $Zr_{1-x}Be_x$(0.4$\leq$x$\leq$0.5) amorphous alloys were crystallized to $\alpha$-Zr and ZrBe$_2$, simultaneously. The thickness of the layer brazed with amorphous alloy was increased with increasing the beryllium content due to the higher diffusion of Be. The morphology of brazed layer with PVD Be filler metal showed dendrite while that brazed with amorphous alloys appeared globular. Micro-Vickers hardness of brazed zone increased as the beryllium content of filler metal was decreased.

스트레처블 배선용 저저항 알루미늄-몰리브데늄 합금에 대한 연구 (A study on the Low Resistance Aluminum-Molybdenum Alloy for stretchable metallization)

  • 이민준;배진원;박수연;최재익;김건호;서종현
    • 한국표면공학회지
    • /
    • 제56권2호
    • /
    • pp.160-168
    • /
    • 2023
  • Recently, investigation on metallization is a key for a stretchable display. Amorphous metal such as Ni and Zr based amorphous metal compounds are introduced for a suitable material with superelastic property under certain stress condition. However, Ni and Zr based amorphous metals have too high resistivity for a display device's interconnectors. In addition, these metals are not suitable for display process chemicals. Therefore, we choose an aluminum based amprhous metal Al-Mo as a interconnector of stretchable display. In this paper, Amorphous Forming Composition Range (AFCR) for Al-Mo alloys are calculated by Midema's model, which is between 0.1 and 0.25 molybdenum, as confirmed by X-ray diffraction (XRD). The elongation tests revealed that amorphous Al-20Mo alloy thin films exhibit superior stretchability compared to pure Al thin films, with significantly less increase in resistivity at a 10% strain. This excellent resistance to hillock formation in the Al20Mo alloy is attributed to the recessed diffusion of aluminum atoms in the amorphous phase, rather than in the crystalline phase, as well as stress distribution and relaxation in the aluminum alloy. Furthermore, according to the AES depth profile analysis, the amorphous Al-Mo alloys are completely compatible with existing etching processes. The alloys exhibit fast etch rates, with a reasonable oxide layer thickness of 10 nm, and there is no diffusion of oxides in the matrix. This compatibility with existing etching processes is an important advantage for the industrial production of stretchable displays.

게터용 Zr57V36Fe7 합금의 수소 흡수특성에 미치는 비정질화의 영향 (The Effects of Amorphization on Hydrogen Absorption Properties of Zr57V36Fe7 Getter alloy)

  • 박제신;서창열;김원백
    • 한국재료학회지
    • /
    • 제15권12호
    • /
    • pp.802-808
    • /
    • 2005
  • The hydrogen sorption speeds of $Zr_{57}V_{36}Fe_7$ amorphous alloy and its crystallized alloys were evaluated at room temperature $Zr_{57}V_{36}Fe_7$ amorphous alloy was prepared by ball milling. The amorphous alloy was crystallized through two stages. Initially, $\alpha-Zr$ solid solution was appeared from the amorphous phase. Two cubic Laves compounds were precipitated afterwards from the remained amorphous and from excessively saturated solid solution at higher temperature. The hydrogen sorption speed of the partially crystallized alloy was higher than that of amorphous. The enhanced sorption speed of partially crystallized alloy was explained in terms of surface oxygen stability which has been known to retard the activation of amorphous alloys. The retardation could be reduce by crystallization process resulting in the observed increase in sorption property.

Ni added Si-Al Alloys with Enhanced Li+ Storage Performance for Lithium-Ion Batteries

  • Umirov, Nurzhan;Seo, Deok-Ho;Jung, Kyu-Nam;Kim, Hyang-Yeon;Kim, Sung-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권1호
    • /
    • pp.82-88
    • /
    • 2019
  • Here, we report on nanocrystalline Si-Al-M (M = Fe, Cu, Ni, Zr) alloys for use as an anode for lithium-ion batteries, which were fabricated via a melt-spinning method. Based on the XRD and TEM analyses, it was found that the Si-Al-M alloys consist of nanocrystalline Si grains surrounded by an amorphous matrix phase. Among the Si-Al-M alloys with different metal composition, Ni-incorporated Si-Al-M alloy electrode retained the high discharge capacity of 2492 mAh/g and exhibited improved cyclability. The superior $Li^+$ storage performance of Si-Al-M alloy with Ni component is mainly responsible for the incorporated Ni, which induces the formation of ductile and conductive inactive matrix with crystalline Al phase, in addition to the grain size reduction of active Si phase.

Comparisons of Magnetic and Magneto-Optic Properties between Fe-rich and Nd-rich Amorphous $Nd_xFe_{1-x} $Alloys

  • Kim, Jae-Young;Kim, Jeoung-Hoon;Oh, Hyun-Woo
    • Journal of Magnetics
    • /
    • 제3권2호
    • /
    • pp.49-54
    • /
    • 1998
  • Dependence of magnetic and magneto-optic properties on composition of amorphous NdFe alloys has been studied to identify a promising magneto-optic recording material in the wavelength of a blue laser beam. From the view point of crystallographic state, perpendicular magnetic anisotropy energy and polar Kerr rotation angle, the Nd-rich region was found to be suitable for the research purpose.

  • PDF

Partitioning of Si in Fe-Zr-Si-B Nanocrystalline Alloys

  • Waniewska, A.Slawska;Greneche, J.M.;A.Inoue
    • Journal of Magnetics
    • /
    • 제4권1호
    • /
    • pp.1-4
    • /
    • 1999
  • The microstructure and magnetic properties of$ Fe_{87}Zr_7Si_4B_2$ nanocrystalline alloys were studied by magnetization measurements and M ssbauer spectrometry over a wide temperature range. Three well resolved spectral components have been found and attributed to bcc-Fe grains (with almost pure iron structure), residual amorphous matrix enriched with solute elements and interfaces formed at the grain-matrix boundaries. It has been shown that, contrary to the expectation, during crystallization the atomic segregation occurs leading to the formation of primary bcc-Fe grains and the partition of Si atoms into the residual amorphous matrix.

  • PDF

지르칼로이-4 브레이징용 비정질 Ti-Be 용가재의 결정화 거동 및 접합부 미세조직 (Crystallization Behavior of Amorphous Ti-Be Alloys as Filler Metals for Joining Zircaloy-4 Tubes and Microstructures of the Brazed Zones)

  • 김상호;고진현;박춘호
    • 한국재료학회지
    • /
    • 제12권4호
    • /
    • pp.259-263
    • /
    • 2002
  • Three different ribbons of amorphous $Til_{1-x}Be_x$ alloys such as $Ti_{0.59}Be_{0.41},\;Ti_{0.61}Be_{0.39}\;and\;Ti_{0.63}Be_{0.37}$ were made by melt-spinning method to be used as brazing filler metals for joining Zircaloy-4 nuclear fuel cladding tubes, and their crystallization behavior as well as microstructure of the brazed zone were examined. The crystallization behavior was investigated in teams of thermal stability, crystallization temperature and activation energy. The crystallization of the $Ti_{1-x}Be_x$ alloys proceeded in two steps by the formation of ${\alpha}$-Ti at a lower temperature and of TiBe at a higher temperature. The crystallization temperature and activation energy of $Ti_{1-x}Be_x$ alloys were higher and larger than those of $Zr_{1-x}Be_x$ alloys and PVD Be. Those resulted thinner joining layer with $Ti_{1-x}Be_x$ alloys, which kept sound thickness of Zircaloy-4 nuclear fuel cladding tubes after brazing. But in the brazed zones made by $Ti_{1-x}Be_x$ filler metals, a little solid-solution layers composed of Zr and Ti were formed toward the Zr cladding tube and Zr was detected in the brazed zones. Microstructure of brazed zone was changed from globular to dentrite with decreasing Be content in the $Ti_{1-x}Be_x$ filler metal.

Fe-P-C-B-(AI-Ge)계 비정질합금의 열적 안정성과 등온결정화 거동 (Thermal Stability and Behavior of Isothermal Crystallization in Fe-P-C-B-(AI-Ge) Amorphous Alloys)

  • 전우용;국진선;배인성;설경원
    • 한국재료학회지
    • /
    • 제8권11호
    • /
    • pp.1026-1030
    • /
    • 1998
  • Fe기 비정질합금에서 과냉각액체영역의 유무에 따른 열적 안정성을 비교평가하기 위하여 결정화온도 이하에서 유리천이가 나타나지 않는 $Fe_{80}P_6C_{12}B_{12}$합금과 52K의 과냉각 액체영역을 갖는 $Fe_{73}P_{11}C_6B_4AI_4Ge_2$ glassy 합금을 열분석하였다. 등온결정화에 의한 열분석의 결과 JMA plot의 n값은 $Fe_{80}P_6C_{12}B_{12}$합금이 1.8-2.2이고 과냉각 액체영역을 갖는 $Fe_{73}P_{11}C_6B_4AI_4Ge_2$ 합금이 2.5-4.0으로서 후자의 경우가 열적으로 안정하였다. 결정화의 양상은 $Fe_{80}P_6C_{12}B_{12}$ 합금의 경우 핵생성속도가 일정할 때 확산율속에 의해 결정입자가 성장하는 반면 $Fe_{73}P_{11}C_6B_4AI_4Ge_2$ glassy합금의 경우 핵생성속도가 일정할 때 계면입자가 성장한다. $Fe_{73}P_{11}C_6B_4AI_4Ge_2$ 합금 및 $Fe_{80}P_6C_{12}B_{12}$ 합금의 결정화에 필요한 활성화에너지, 핵생성 및 성장에 필요한 활성화에너지는 각각 371, 353kJ/mol, 그리고 324, 301KJ/mol 및 301, 273KJ/mol로서 과냉각 액체영역을 갖는 합금이 열적으로 안정하다고 판단된다.

  • PDF