• Title/Summary/Keyword: amorphous alloy

Search Result 389, Processing Time 0.022 seconds

Bulk Amophisation and Decomposition Behavior of Mg-Cu-Y Alloys (Mg-Cu-Y합금의 벌크 비정질화 및 상분해 거동)

  • Kim, S.H.;Kim, D.H.;Lee, J.S.;Park, C.G.
    • Applied Microscopy
    • /
    • v.26 no.2
    • /
    • pp.235-241
    • /
    • 1996
  • Amophization and decomposition behaviour in $Mg_{62}Cu_{26}Y_{12}$ alloy prepared by melt spinning method and wedge type metal mold casting method have been investigated by a detailed transmission electron microscopy. Amorphous phase has formed in melt-spun ribbon. In the case of the wedge type specimen, however, the amorphous phase has formed only around the tip area within about 2 mm thickness. The remaining part of the wedge type specimen consists of crystalline phases, $Mg_{2}Cu\;and\;Cu_{2}Y$. The supercooling for crystallization behaviour of the amorphous $Mg_{62}Cu_{26}Y_{12}$ alloy, ${\Delta}T_x$ has been measured to be about 60 K. Such a large undercooling of the crystallization bahaviour enables formation of the amorphous phase in the $Mg_{62}Cu_{26}Y_{12}$ alloy under the cooling rate of $10^{2}K/s$. The amorphous $Mg_{62}Cu_{26}Y_{12}$ has decomposed into crystalline phases, $Mg_{2}Cu\;and\;Cu_{2}Y$ after heat treatment at $170^{\circ}C\;and\;250^{\circ}C$.

  • PDF

Effect of Dealloying Condition on the Formation of Nanoporous Structure in Melt-Spun Al60Ge30Mn10 Alloy

  • Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.160-163
    • /
    • 2016
  • Effect of dealloying condition on the formation of nanoporous structure in melt-spun $Al_{60}Ge_{30}Mn_{10}$ alloy has been investigated in the present study. In as-melt-spun $Al_{60}Ge_{30}Mn_{10}$ alloy spinodal decomposition occurs in the undercooled liquid during cooling, leading to amorphous phase separation. By immersing the as-melt-spun $Al_{60}Ge_{30}Mn_{10}$ alloy in 5 wt% HCl solution, Al-rich amorphous region is leached out, resulting in an interconnected nano-porous $GeO_x$ with an amorphous structure. The dealloying temperature strongly affects the whole dealloying process. At higher dealloying temperature, dissolution kinetics and surface diffusion/agglomeration rate become higher, resulting in the accelerated dealloying kinetics, i.e., larger dealloying depth and coarser pore-ligament structure.

Thermal Properties of Al-Ni-Y Alloy Amorphous Ribbons and High Temperature Deformation Behavior of Al-Ni-Y Alloy Extrudates Fabricated with Amorphous Ribbons (Al-Ni-Y 합금 비정질 리본의 열적 특성 및 리본 압출재의 고온변형 특성)

  • Ko, Byung-Chul;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.333-339
    • /
    • 1998
  • Hot torsion tests were conducted to investigate the high temperature deformation behavior of $Al_{85}Ni_{10}Y_5$ alloy extrudates fabricated with amorphous ribbons. The powder metallurgy routes, hot pressing and hot extrusion were used to fabricate the extrudates. Thermal properties of amorphous ribbons with different thickness as a function of aging temperature were studied by thin film x-ray dif-fraction (XRD) and differential scanning calorimetry(DSC). The Al phase crystallite firstly formed in the amorphous ribbons and its crystallization temperature($T_x$)Was ~210${\circ}C$ During the processings of consolidation and extrusion, nano-grained structure(~100 nm) was formed in the Al85Ni10Y5 alloy extrudates. The as-extrudated Al85Ni10Y5 alloy and the $Al_{85}Ni_{10}Y_5$ alloy annealed at 250${\circ}C$ for 1 hour showed a flow curve of DRV(dynamic recovery) during hot deformation at 400-550${\circ}C$. On the other hand, the $Al_{85}Ni_{10}Y_5$ alloy annealed at 400${\circ}C$ for 1 hour showed a flow curve of DRX(dynamic recrys-tallization) during hot deformation at 450-500${\circ}C$. Also the flow stress and flow strain of the $Al_{85}Ni_{10}Y_5$ alloy extrudate annealed at 400${\circ}C$ were higher than those at 250${\circ}C$.

  • PDF

Electrochemical Corrosion Behaviors of Amorphous $Zr_{65}Al_8Ni_{15}Cu_{12}$ Alloy (비정질 $Zr_{65}Al_8Ni_{15}Cu_{12}$ 금속합금의 전기화학적 부식 특성)

  • Kim, Hyun-Goo
    • Journal of Integrative Natural Science
    • /
    • v.2 no.4
    • /
    • pp.233-236
    • /
    • 2009
  • This study was undertaken to measure the electrochemical corrosion of amorphous $Zr_{65}Al_8Ni_{15}Cu_{12}$ (at.%) alloy ribbon under various conditions, including 0.4 mM HCl solution, and for various values of the pH and the immersion time. The corrosion potentials($E_{corr}$) for the amorphous $Zr_{65}Al_8Ni_{15}Cu_{12}$ alloy in 0.4 mM HCl decreased with increasing temperature; the corrosion current density($I_{corr}$) increased with increasing temperature in general. The polarization resistance($R_p$) was inversely proportional to the corrosion rate. While pH=7, 9, 11 was not as sensitive as pH=3, 5, pH=3 was more sensitive for amorphous $Zr_{65}Al_8Ni_{15}Cu_{12}$ alloy than other pHs specially. The change of mass in the 70 mM $H_2SO_4$ solution with immersion time was the greatest in the first 100 h.

  • PDF

Evaluation on Liquid Formability of Bulk Amorphous Alloys (벌크비정질합금의 액상 성형성 평가)

  • Joo, Hye-Sook;Kang, Bok-Hyun;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.26 no.5
    • /
    • pp.227-231
    • /
    • 2006
  • Liquid formability of bulk amorphous alloys is known to be very poor due to their high viscosity comparing with conventional metallic materials. It is important to have the fabricating technology of bulk amorphous alloys in order to make the components with complicated shape. Liquid formability includes the mold cavity filling ability and the hot tear(crack) resistance during solidification. A mold made of a commercial tool steel for the formability test was designed. Melting was performed by the arc melting furnace with melting capacity of 200 g in an argon atmosphere. Liquid formability and glass forming ability of Cu base and Ni base bulk amorphous alloys were measured and evaluated. Mold filling ability of Ni-Zr-Ti-Si-Sn alloy was better than that of Cu-Ni-Zr-Ti alloy, however the reverse is the hot tear resistance. Bulk amorphous alloy is very susceptible to crack if partial crystallization occurs during solidification. Crack resistance was thought to be closely related with the glass forming ability.

Thermal Pro0perties and High Temperature Deformation Behaviors of Al-Ni-Y Amprphous Alloy (Al-Ni-Y 비정질 합금의 열적특성 및 고온변형특성에 관한 연구)

  • 고병철;김종현;유연철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.72-75
    • /
    • 1998
  • High temperature deformation behavior of Al85Ni10Y5 alloy extrudates fabricated with amorphous ribbons was investigated at temperature range form 300 to 550$^{\circ}C$ by torsion tests. Thermal properties of amorphous ribbons as a function of aging temperature was studied by Differential Scanning Calorimetry(DSC). The Al phase crystallite firstly formed in the amorphous ribbons and its crystallization temperature(Tx) was ∼210$^{\circ}C$. During the processings of consolidation and extrusion, nano-grained structure was formed in the Al85Ni10Y5 alloy extrudates. The as-extrudated Al85Ni10Y5 alloy and the Al85Ni10Y5 alloy annealed at 250$^{\circ}C$ for 1 hour showed the flow curve of DRV(dynamic recovery) during hot deformation at 400-550$^{\circ}C$. On the other hand, the Al85Ni10Y5 alloy annealed at 400$^{\circ}C$ for 1 hour showed the flow curve of DRX(dynamic recrystallization) during hot deformation at 450-500$^{\circ}C$.

  • PDF

A New Cu-Hf-Al-Be Bulk Amorphous Alloy with High Glass Forming Ability (우수한 비정질 형성능을 가지는 Cu-Hf-Al-Be 4원계 벌크 비정질 합금)

  • Shin, Sang-Soo;Lim, Kyoung-Mook;Kim, Seong-Nyeong;Kim, Eok-Soo
    • Journal of Korea Foundry Society
    • /
    • v.31 no.4
    • /
    • pp.186-190
    • /
    • 2011
  • A new Cu-Hf-Al-Be monolithic bulk amorphous alloy was developed utilizing minimal use of toxic and expensive Be. The developed alloy exhibits a large glass forming ability (GFA) (${\Phi}8$ mm). The possible mechanisms underlying the enhancement of the glass forming ability by this alloy are discussed based on the dimensionless parameter ${\gamma}$. In addition, alloy design strategy for the improvement of GFA is proposed in the viewpoint of heat of mixing (${\Delta}H_{mix}$)difference and atomic packing state.

Structural Disordering and Relaxation Process in an Amorphous Alloy (비정질 합금의 구조완화 및 구조무질서화)

  • Kim, Hyun-Su;Yoon, Kyeu-Sang;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.823-830
    • /
    • 2011
  • Structural change in an amorphous alloy was measured by applying a load below the global yield stregth at ambient temperatures. It was observed that the magnitude of the apparent structural change occuring in the amorphous alloy is determined by the compatative relationship between the stress-induced disordering process and the thermally-activated relaxation process. Structural disorder was observed to take place even at a stress well below the global yield, and the degree of the disorder was increased abruptly at the earlier stage of loading and saturated with time. In the mean time, unlike the previous belief, the relaxation process was observed to occur even at embient temperatures, and the degree of the relaxation was observed to increase linearly with time. The analytical equation predicting the structural change was proposed.

Fabrication of Ni-Nb-Ti-Zr Amorphous Alloys with Wide Supercooled Liquid Region (넓은 과냉각 액체영역을 가지는 Ni-Nb-Ti-Zr계 비정질 합금의 제조)

  • Kim, Sung-Gyoo
    • Journal of Korea Foundry Society
    • /
    • v.22 no.5
    • /
    • pp.252-256
    • /
    • 2002
  • Ni-Nb-Ti-Zr amorphous alloys were manufactured using melt-spinning methods. Amorphous formability, the supercooled liquid region before crystallization and mechanical properties were examined. The value of the reduced glass transition temperature and the supercooled liquid region of $Ni_{62}Nb_{10}Ti_{13}Zr_{15}$ alloy were relatively high and were 0.612 and 76 K respectively. However, amorphous bulk alloy rod was not formed using the Cu-mold die casting. The mechanical properties were in the range of $800{\sim}900DPN$ of hardness and $2.5{\sim}2.8$ GPa of tensile strength in the whole composition range.

Effect of Isothermal annealing on the Corrosion Resistance of an Amorphous Alloy (비정질 합금의 부식저항성에 미치는 열처리의 영향)

  • Shin, Sang-Soo;Lee, Chang-Myeon;Yang, Jae-Woong;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.53-57
    • /
    • 2008
  • This study examined the role of excess free volume on the corrosion resistance of an amorphous alloy. Corrosion behaviors were monitored on the amorphous alloys, of which amount of free volume was controlled via the isothermal annealing below the glass transition temperature, using immersion tests and potentiodynamic polarization tests in HCl aqueous solutions. It was found that the corrosion resistance of the amorphous alloy is improved by reducing the amount of excess free volume. The possible reason explaining the experimental result was discussed from the viewpoint of the internal energy associated with the annihilation of excess free volume.