• 제목/요약/키워드: amorphous alloy

검색결과 389건 처리시간 0.032초

Fe-계 비정질 합금의 절연 코팅이 자기적 성질에 미치는 영향 (Influence of Insulated Coatings on The Magnetic Properties of Fe-Based Amorphous Alloy)

  • 김현식;오영우;김병걸;전순종;김기욱;민복기;송재성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1311-1313
    • /
    • 1994
  • The development of an insulated coating which can be used for amorphous alloys is extremely important from the practical point of view. This importance may be enhanced by the influence of the coating on the magnetic properties. The aim of the study is to show how some coating influence the magnetic properties of $Fe_{87}Zr_7B_5Ag_1(at%)$ amorphous alloy.

  • PDF

Bulk Amorphous and/or Nanocrystalline Finemet Alloy Prepared by Super-high-pressure Consolidation

  • Lu, Wei;Yanb, Biao
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.788-789
    • /
    • 2006
  • Microstructure and soft magnetic properties of bulk amorphous and/or nanocrystalline $Fe_{73.5}Cu_1Nb_3Si_{13.5}B_9$ alloys prepared by consolidation at 5.5GPa were investigated. The relative density of the bulk sample 1 (from amorphous powders) was 98.5% and the grain sizes were about 10.6nm. While the relative density and grain sizes of bulk sample 2 (from nanocrystalline powders) are 98% and 20.1nm, respectively. Particularly, the bulk samples exhibited a good combined magnetic property: for Sample1, $M_s=125emu/g$ and $H_c=1.5Oe;$ for Sample2, $M_s=129emu/g$ and $H_c=3.3Oe$. The success of synthesizing the nanocrystalline Fe-based bulk alloys will be encouraging for the future development of bulk nanocrystalline soft magnetic alloys.

  • PDF

Low Temperature Magnetization and Spin Wave Excitations in Amorphous Fe67 Co18B14Si1

  • Yoo, Yong-Goo;Yu, Seong-Cho;Hans A. Graf
    • Journal of Magnetics
    • /
    • 제2권3호
    • /
    • pp.72-75
    • /
    • 1997
  • The temperature dependent saturation magnetization curve of amorphous Fe67 Co18B14Si1, alloy was measured using a SQUID magnetometer and vibrating sample magnetometer from 5 K up to 800 K. Inelastic neutron neutron scattering measurements also have been used to study the long wavelength spin dynamics of this high Tc amorphous ferromagnetic alloy. The magnon dispersion curve exhibit the conventional quadratic relationship E = D (T) q2 + $\Delta$, typical of an iso=obtained from a low temperature magnetization curve, which was consistent with the value obtained from the analysis oif inelastic neutron scattering data after consideration of its temperature dependence.

  • PDF

Fe-B-Al계 비정질합금의 자왜 및 자기탄성효과 (Magnetostriction and Magnetoelastic Propwrties of Amorphous Fe-B-Al Alloys)

  • 조용수;김윤배;김창석;김택기
    • 한국자기학회지
    • /
    • 제3권2호
    • /
    • pp.135-138
    • /
    • 1993
  • Fe-B계 비정질합금에 Al을 치환한 $Fe_{82}B_{18-x}Al_{x}$$Fe_{80}B_{20-x}Al_{x}$급속응고합금의 포화자왜 인장응력에 의한 자기탄성효과가 조사되었다. 포화자왜는 Al 치환량이 증가 할수록 증가 하며, 비정질 $Fe_{82}B_{14}Al_{14}$합금에서 45 ppm으로 가장 높다. 비정질 $Fe_{82}B_{14}Al_{14}$ 합금의 인장응력에 따른 최대자속밀도의 변화율은 약 $0.026\;T.mm^{2}/N$으로 고분해능 역학센서로 응용이 가능할 것으로 예상된다.

  • PDF

Crystallization Behavior of Ti-(50-x)Ni-xCu(at%) (x = 20-30) Alloy Ribbons

  • Kim, Min-Su;Jeon, Young-Min;Im, Yeon-Min;Lee, Yong-Hee;Nam, Tae-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권1호
    • /
    • pp.20-23
    • /
    • 2011
  • Amorphous Ti-(50-x)Ni-xCu (at%) (x = 20, 25, 27, 30) alloy ribbons were prepared by melt spinning. Subsequently, the crystallization behavior of the alloy ribbons was investigated by X-ray diffraction and differential scanning calorimetry. ${\Delta}T$ (the temperature gap between $T_g$ and $T_x$) increased from 33 K to 47 K and the wavenumber ($Q_p$) decreased from 29.44 $nm^{-1}$ to 29.29 $nm^{-1}$ with increasing Cu content from 20 at% to 30 at%. The activation energy for crystallization decreased from 188.5 kJ/mol to 170.6 kJ/mol with increasing Cu content from 20 at% to 25 at%; afterwards, the activation energy remained near constant. Crystallization occurred in two-stage: amorphous-B2-$TiCu_2$ in Ti-Ni-Cu alloys with Cu content less than 25 at%, while it occurred in three-stage; amorphous-B2-TiCu-$TiCu_2$ in Ti-Ni-Cu alloys with Cu content more than 27 at%.

Zr-Al-Cu-Ni계 합금의 비정질형성능에 미치는 Pd과 Ag 복합첨가의 영향 (The Influence of (Pd+Ag) Additions on the Glass Forming Ability of Zr-Al-Cu-Ni based Alloys)

  • 김미혜;이병우;김성규;배차헌;정해용
    • 한국주조공학회지
    • /
    • 제24권1호
    • /
    • pp.40-44
    • /
    • 2004
  • The influence of Pd and Ag additions on the thermal stability, the glass forming ability (GFA) and mechanical property of $Zr_{55}Al_{10}Cu_{20}Ni_{10}Pb_{(5-x)}Ag_x$ (x = $0{\sim}5at%$) alloys obtained by melt spun and injection casting method have been investigated by using of X-ray diffraction, thermal analysis (DTA, DSC) and micro-Vickers hardness(Hv) testing. The thermal properties of melt-spun $Zr_{55}Al_{10}Cu_{20}Ni_{10}Pb_{(5-x)}Ag_x$ (x = $0{\sim}5at%$) alloys exhibit a supercooled liquid region(${\Delta}T_x$) exceeding 91 K before crystallization. The largest ${\Delta}T_x$ reaches as large as 126 K for the $Zr_{55}Al_{10}Cu_{20}Ni_{10}Pb_5$ alloy. The reduced glass transition temperature, $T_{rg}$ increased with increasing Ag content. The largest $T_{rg}$ is obtained for the $Zr_{55}Al_{10}Cu_{10}Ni_{10}Ag_5$ alloy. The $Zr_{55}Al_{10}Cu_{10}Ni_{10}Ag_5$ bulk amorphous alloy rod with 3 mm in diameter was fabricated by injection casting. Hv increased with increasing Ag content and the largest value was obtained for the $Zr_{55}Al_{10}Cu_{10}Ni_{10}Ag_5$ bulk amorphous alloy.

Zr 기지 비정질 합금 스크랩의 비정질 형성능 및 기계적 성질에 미치는 재용해 횟수와 탄소 함량의 영향 (The Effect of Remelting Cycles and Its Carbon Content on the Glass Forming Ability and Mechanical Properties of the Zr-based Amorphous Alloy Return Scrap)

  • 이병철;김성규;박봉규;박흥일;박화순
    • 한국주조공학회지
    • /
    • 제34권3호
    • /
    • pp.94-99
    • /
    • 2014
  • A commercially used Zr-based amorphous alloy was recycled and the effects of introducing carbon during recycling on the glass forming ability and mechanical properties of the alloy were investigated. The initial carbon content used in this study was 229ppm. The carbon content was gradually increased as the number of recycling iterations was increased and after the $4^{th}$ recycling it rapidly increased. As return scrap was recycled, polygonal particles precipitated, and they were identified as ZrC. The amount of the precipitates also increased with recycling. Tg, Tx and ${\Delta}T$ of the base alloy were 615 K, 696 K and 81 Kr respectively and they changed to 634 K, 706 K and 72 K after the $10^{th}$ recycling. The decrease of the ${\Delta}T$ value indicates deterioration of the glass forming ability. Hardness was not changed during three iterations of recycling but after the $4^{th}$ recycling it significantly increased. This is ascribed to an increase of amount of the hard particles, namely ZrC.

Mechanical Alloying Effect in Immiscible Cu-Based Alloy Systems.

  • Lee, Chung-Hyo;Lee, Seong-Hee;Kim, Ji-Soon;Kwon, Young-Soon
    • 한국분말재료학회지
    • /
    • 제10권3호
    • /
    • pp.164-167
    • /
    • 2003
  • The mechanical alloying effect has been studied on the three Cu-based alloy systems with a positive heat of mixing. The extended bcc solid solution has been formed in the Cu-V system and an amorphous phase in the Cu-Ta system. However, it is round that a mixture of nanocrystalline Cu and Mo Is formed in the Cu-Mo system. The neutron diffraction has been employed at a main tool to characterize the detailed amorphization process. The formation of an amorphous phase in Cu-Ta system can be understood by assuming that the smaller Cu atoms preferentially enter into the bcc Ta lattice during ball milling.

Ni added Si-Al Alloys with Enhanced Li+ Storage Performance for Lithium-Ion Batteries

  • Umirov, Nurzhan;Seo, Deok-Ho;Jung, Kyu-Nam;Kim, Hyang-Yeon;Kim, Sung-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권1호
    • /
    • pp.82-88
    • /
    • 2019
  • Here, we report on nanocrystalline Si-Al-M (M = Fe, Cu, Ni, Zr) alloys for use as an anode for lithium-ion batteries, which were fabricated via a melt-spinning method. Based on the XRD and TEM analyses, it was found that the Si-Al-M alloys consist of nanocrystalline Si grains surrounded by an amorphous matrix phase. Among the Si-Al-M alloys with different metal composition, Ni-incorporated Si-Al-M alloy electrode retained the high discharge capacity of 2492 mAh/g and exhibited improved cyclability. The superior $Li^+$ storage performance of Si-Al-M alloy with Ni component is mainly responsible for the incorporated Ni, which induces the formation of ductile and conductive inactive matrix with crystalline Al phase, in addition to the grain size reduction of active Si phase.