• Title/Summary/Keyword: amorphous CoSiB

Search Result 96, Processing Time 0.042 seconds

Soft Magnetic Properties of Annealed Co-Based Amorphous Co66Fe4Ni1B15Si14 Alloy Ribbon

  • Yang, J.S.;Cho, Y.;Son, D.;Ryu, K.S.
    • Journal of Magnetics
    • /
    • v.2 no.4
    • /
    • pp.130-134
    • /
    • 1997
  • The amorphous Co-based alloy Co66Fe4Ni1B15Si14 (Metglas 2714A) is a suitable magnetic core material for high frequency operation. Appreciable reduction of the coercive force can be achieved by proper heat treatment. In this study, samples annealed at wide temperature range were analyzed using differential scanning calorimetry, high frequency B-H loop tester, X-ray diffractometer and resistivity meter. The results show that coercive force at 10 kHz decreases with in-creasing annealing temperature up to 773 K, but dramatically increases above this temperature. The squareness shows that the magnetic anisotropy on longitudinal direction of the as-cast state remains up to 773 K. Above this temperature, it decreases down to 0.5 that represents random distribution of magnetic domains. The crystallization abruptly occurs between 781 K and 783 K.

  • PDF

Grain Size Dependence of Soft Magnetic Properties in $Fe_{68.5}Co_5M_3Cu_1Si_{13.5}B_9(M=Nb, Mo, Mn, Cr)$ Nanocrystalline Alloys ($Fe_{68.5}Co_5M_3Cu_1Si_{13.5}B_9(M=Nb, Mo, Mn, Cr)$계 초미세결정립합금의 결정립 크기에 따른 자기적 특성의 변화)

  • 조용수;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.37-41
    • /
    • 1991
  • Amorphous $Fe_{68.5}Co_5M_3Cu_1Si_{13.5}B_9(M=Nb, Mo, Mn, Cr)$ alloys were prepared by using rapidly quenching techinque and were annealed above their crystallization temperatures. Coercive force, initial permeability and AC power loss of the annealed $Fe_{68.5}Co_5M_3Cu_1Si_{13.5}B_9(M=Nb, Mo, Mn, Cr)$ alloys have been studied systematically. Nanocrystallines are formed in the annealed alloys which include Mo and Nb. Remarkably improved soft magnetic properties are obtained in the alloys whose average grain size is around 10 nm. However, soft magnetic properties of the alloys are degraded when grain size is less than IOnm or larger than 15nm. It is considered that the degradation of soft magnetic properties in the alloys whose average grain size is less than 10 nm is due to the Fe-rich amorphous phase retained at grain boundary during the initial crystallization process.

  • PDF

Magneto-Impedance Effect of FeCoSiB Amorphous Magnetic Films (FeCoSiB계 아몰퍼스 자성박막의 자기-임피 던스 효과)

  • Shin, Yong-Jin;Soh, Dae-Hwa;Kim, Hyen-Wook;Kim, Dae-Ju;Seo, Kang-Soo
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.252-255
    • /
    • 1998
  • In this paper, we investigate the magneto-impedance(M1) effect of the FeCoSiB amorphous magnktic films. The amorphous magnetic film having near zero magnetostriction is fabricated by using the sputtering method, and then annealed in magnetic field. When the external magnetic field is directly applied to the fabricated film, the voltage amplitude between both side of the magnetic film varies about 76.2% at 120[MHzl and the impedance varies about 2.1%/0e. Thus, we find that the fabricated magnetic film has the characteristics of good sensor element.

  • PDF

Magnetic Properties of Nanocrystalline Fe-Co-Cu-Nb-Si-B Alloys (Fe-Co-Cu-Nb-Si-B 초미세결정합금의 자기적 특성연구)

  • 김약연;백종성;서영수;임우영;유성초;이수형
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.2
    • /
    • pp.130-134
    • /
    • 1993
  • The magnetic properties of the amorphous $Fe_{73.5-X}Co_{X}Cu_{1}Nb_{3}Si_{13.5}B_{9}(x=2,\;4)$ alloys, fabricated by a single roll rapid quenching technique and annealed at $400~650^{\circ}C$, have been investigated. The optimum annealing temperature is $550^{\circ}C$ for the amorphous $Fe_{71.5}Co_{2}Cu_{1}Nb_{3}Si_{13.5}B_{9}$ alloy. The properties of the nanocrystalline $Fe_{71.5}Co_{2}Cu_{1}Nb_{3}Si_{13.5}B_{9}$ alloy show the relative permeability of $1.1{\times}10^{4}$ and the coercive force of 0.22 Oe at 1 kHz. When annealed at $600^{\circ}C$, the nanocrystalline $Fe_{69.5}Co_{4}Cu_{1}Nb_{3}Si_{13.5)B_{9}$ alloy shows the relative permeability of $1.0{\times}10^{4}$ and the coercive force of 0.19 Oe at 1 kHz. From the X-ray measurement, it is found that the remarkably improved soft magnetic properties are the effect of the formation of $\alpha$-Fe(Si) grain. By the results of FMR exper-imeIlt, the optimum annealing condition is just below temperature which the peak-to-peak line width of FMR spectrum increase rapidly.

  • PDF

A Study on the Fabrication of Amorphous Magnetostrictive Wire (아몰퍼스 자왜 와이어의 제작에 관한 연구)

  • 김대주;정왕일;조남희;신용진;강재덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.99-101
    • /
    • 1996
  • This paper is concerned with the fabrication of (Fe,Co)-Si-B amorphous magneto-strictive wire which attracts strong attention as a new sensor material. First, we put the ingot of (Fe$\sub$1-x/Co$\sub$x/)$\sub$77/Si$\sub$8/B$\sub$15/ composition into quartz tube. Then, under the condition of 400MHz and 8kW, we melt and mix the in-got in the high frequency induction furnance. After that, we obtain the magnetostrictive wire of 100∼150$\mu\textrm{m}$ in diameter by injection and rapid quenching within the high rotating water. Finally, we find that the wire is under the amorphous state.

  • PDF

Low Temperature Magnetization and Spin Wave Excitations in Amorphous Fe67 Co18B14Si1

  • Yoo, Yong-Goo;Yu, Seong-Cho;Hans A. Graf
    • Journal of Magnetics
    • /
    • v.2 no.3
    • /
    • pp.72-75
    • /
    • 1997
  • The temperature dependent saturation magnetization curve of amorphous Fe67 Co18B14Si1, alloy was measured using a SQUID magnetometer and vibrating sample magnetometer from 5 K up to 800 K. Inelastic neutron neutron scattering measurements also have been used to study the long wavelength spin dynamics of this high Tc amorphous ferromagnetic alloy. The magnon dispersion curve exhibit the conventional quadratic relationship E = D (T) q2 + $\Delta$, typical of an iso=obtained from a low temperature magnetization curve, which was consistent with the value obtained from the analysis oif inelastic neutron scattering data after consideration of its temperature dependence.

  • PDF

Soft-magnetic Characteristics of Co-based Amorphous Powder Produced by Spinning Water Atomization Process (SWAP)

  • Otsuka, I.;Wada, K.;Watanabe, A.;Kadomura, T.;Yagi, M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.784-785
    • /
    • 2006
  • Co-based amorphous powder was produced by a new atomization process "Spinning Water Atomization Process (SWAP)", having rapid super-cooling rate. The composition of the alloys was ($(Co_{0.95}Fe_{0.05})_{1-x}Cr_x$)$_{75}Si_{15}B_{10}$ (x=0, 0.025, 0.05, 0.075). The powders became the amorphous state even if particle size was up to about $500{\mu}m$. The coercive force of powders was about 0.35 - 0.7 Oe. Furthermore, Co-based amorphous powder cores with glass binders were made by cold-pressing and sintering methods. The initial permeability of the core in the frequency range up to 100 kHz was about 110, and the core loss at 100 kHz for Bm = 0.1 T was $350kW/m^3$.

  • PDF

Effects of heat treatment and Co addition on the magnetic properties of FeCoBSi thin film (FeCoSiB 자성박막의 자기적 특성에 미치는 Co 및 열처리의 영향)

  • 신현수;양성훈;장태석;박종완
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.389-393
    • /
    • 2000
  • Effects of Co addition and heat treatment on the magnetic properties of Fe-Si-B thin films were investigated. The compositions of metalloids, i.e, B and Si, in the alloys were kept 10 at.% each. Heat treatments were carried out in the temperature range from 100 to $300^{\circ}C$ for up to 60 min. Amorphous thin films of FeCoSiB were deposited on the water-cooled substrates by dc magnetron sputtering. The composition of thin films was controlled by placing proper number of pellets of alloying elements and analyzed by ICP, resulting in $Fe_{80-X}Co_ XB_{10}Si_{10}$ (X=8~18 at.%). Saturation magnetization of the alloys increased as Co concentration increased up to 10 at.% and then decreased with further increase of Co concentration. However, coercive force of the films decreased with the increase of Co concentration. Furthermore, the coercive force was also reduced by the annealing due to the residual stress relief.

  • PDF

Frequency Dependance of Inductance of FeCoB Amorphous Magnetic Films (FeCoB계 아몰퍼스 자성박막의 인덕턴스의 주파수 의존성)

  • 신용진;소대화;김현욱;서강수;임재근
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.5
    • /
    • pp.413-417
    • /
    • 1998
  • In this paper, we investigate frequency dependance of inductance of FeCoB amorphous magnetic films. $(Fe_{1-x}Co_x)_{79}Si_2B_{19}$ was used as the basic composition of amorphous magnetic film having near zero magnetostriction. The amorphous magnetic films were fabricated with x=0.94 and x=0.95 by using sputtering method at high frequency. The films were anneald under non-magnetic field and near crystallization temperatures(30min at $280^{\circ}C$, 30min and 1hr at $400^{\circ}C$, respectively). As the results of the experiments with the fabricated films, the lowest coercive force was 0.084[Oe] at 400[W] of the input power and the crystallization temperature was $360^{\circ}C$ . In the case 30min at 40$0^{\circ}C$ the inductance value in the low frequency with x=0.95 was higher by 488% than that with x=0.94. The quality factor Q was below 0.7 for all samples. We obtained the highest quality value at 400[KHz] with 30min at $280^{\circ}C$ and x=0.94. The value was about 0.62. Also, the quality factor value was about 0.35 at 1[MHz] with 30min at $280^{\circ}C$ and x=0.95.

  • PDF