• 제목/요약/키워드: ammunition

검색결과 172건 처리시간 0.021초

탄약검사기록 데이터 분석 및 탄약상태기호 분류 모델 개발 (Analysis of Ammunition Inspection Record Data and Development of Ammunition Condition Code Classification Model)

  • 정영진;홍지수;김솔잎;강성우
    • 대한안전경영과학회지
    • /
    • 제26권2호
    • /
    • pp.23-31
    • /
    • 2024
  • In the military, ammunition and explosives stored and managed can cause serious damage if mishandled, thus securing safety through the utilization of ammunition reliability data is necessary. In this study, exploratory data analysis of ammunition inspection records data is conducted to extract reliability information of stored ammunition and to predict the ammunition condition code, which represents the lifespan information of the ammunition. This study consists of three stages: ammunition inspection record data collection and preprocessing, exploratory data analysis, and classification of ammunition condition codes. For the classification of ammunition condition codes, five models based on boosting algorithms are employed (AdaBoost, GBM, XGBoost, LightGBM, CatBoost). The most superior model is selected based on the performance metrics of the model, including Accuracy, Precision, Recall, and F1-score. The ammunition in this study was primarily produced from the 1980s to the 1990s, with a trend of increased inspection volume in the early stages of production and around 30 years after production. Pre-issue inspections (PII) were predominantly conducted, and there was a tendency for the grade of ammunition condition codes to decrease as the storage period increased. The classification of ammunition condition codes showed that the CatBoost model exhibited the most superior performance, with an Accuracy of 93% and an F1-score of 93%. This study emphasizes the safety and reliability of ammunition and proposes a model for classifying ammunition condition codes by analyzing ammunition inspection record data. This model can serve as a tool to assist ammunition inspectors and is expected to enhance not only the safety of ammunition but also the efficiency of ammunition storage management.

활공형 탄약의 비행모사 시뮬레이터를 활용한 조건별 최대사거리 연구 (A Study on the Maximum Target Distance Using a Flight Simulator of Glide-Type Ammunition)

  • 신승제;김환우
    • 한국멀티미디어학회논문지
    • /
    • 제21권6호
    • /
    • pp.698-704
    • /
    • 2018
  • When the new ammunition is designed, it is necessary to confirm in advance how long the target distance is depends on the shape and weight of the designed ammunition. Therefore we can use commercial software such as PRODAS to predict the target distance in the design stage. This commercial software has aerodynamic data for various ammunition shape and calculates the target range by calculating the kinetic equations of the ammunition using the aerodynamic data most similar to the designed ammunition. The ammunition for predicting the target distance through software such as PRODAS is a non-guided ammunition that has no control after launch but the glide type ammunition is guided and control ammunition. So it is predicts the state of ammunition after the launch. A new type of simulator is needed to analyze the maximum range and to verify the onboard guided and control algorithm. The simulator constructed in this paper is an optimized simulator for glide type ammunition. Unlike unmanned aircraft and guided missiles. The rotation characteristics of the ammunition are considered and the navigation initialization algorithm is applied. The constructed simulator confirmed the performance by performing maximum range analysis of glide type ammunition.

전시탄약 재보급 할당에 관한 연구 (A Study on Ammunition Resupply Allocation Model)

  • 이영신
    • 한국국방경영분석학회지
    • /
    • 제30권2호
    • /
    • pp.133-140
    • /
    • 2004
  • In this paper, with the limited range of ammunition supply point(ASP) at ammunition battalion in specific corps and light automobile battalion(LAB) directly supports its vehicle for ammunition supply, we propose optimal model to minimize transportation time and logistics cost using integer programming(IP) for efficient ammunition resupply allocation during a given operation period of front combat unit. And then, we consider ammunition treatment and supply capacity of ammunition supply point(ASP), constraint elements of transportation ability considering time and cost, ammunition storage capacity of combat unit, combat situation and unit mission to propose this model. Finally, through numerical example, we examine the applicable feasibility of proposed model.

저장탄약의 품목별 신뢰도평가 사례 연구 (A Case Study on the Reliability Assessment of Stockpile Ammunition)

  • 윤근식;이종찬
    • 품질경영학회지
    • /
    • 제40권3호
    • /
    • pp.259-269
    • /
    • 2012
  • Purpose: The purpose of this study was to find out that the statistical method of stockpile reliability of ammunition by items can be applied to the reliability assessment of stockpile ammunition. Methods: We reviewed the statistical method of stockpile reliability of ammunition by items and verified the possibility of its application by case study. Results: We found that the statistical method of stockpile reliability of ammunition by items is very useful and effective to present the reliability of ammunition based on each item and to predict the change of the reliability in the future. The reliability of proximity fuse was about 94.5% and was influenced by manufacture's year and the difference between lot and lot more than storage period. Conclusion: The statistical method of stockpile reliability of ammunition by items can be applied to the reliability assessment of various stockpile ammunitions such as ammunition for mortar and canon.

불량탄 안전사고 예방을 위한 탄약 수명 예측 연구 리뷰 (A Review on Ammunition Shelf-life Prediction Research for Preventing Accidents Caused by Defective Ammunition)

  • 정영진;홍지수;김솔잎;강성우
    • 대한안전경영과학회지
    • /
    • 제26권1호
    • /
    • pp.39-44
    • /
    • 2024
  • In order to prevent accidents via defective ammunition, this paper analyzes recent research on ammunition life prediction methodology. This workanalyzes current shelf-life prediction approaches by comparing the pros and cons of physical modeling, accelerated testing, and statistical analysis-based prediction techniques. Physical modeling-based prediction demonstrates its usefulness in understanding the physical properties and interactions of ammunition. Accelerated testing-based prediction is useful in quickly verifying the reliability and safety of ammunition. Additionally, statistical analysis-based prediction is emphasized for its ability to make decisions based on data. This paper aims to contribute to the early detection of defective ammunition by analyzing ammunition life prediction methodology hereby reducing defective ammunition accidents. In order to prepare not only Korean domestic war situation but also the international affairs from Eastern Europe and Mid East countries, it is very important to enhance the stability of organizations using ammunition and reduce costs of potential accidents.

60, 81mm 박격포탄의 저장수명 요인 연구 (A study on the factors affecting shelf-life for 60, 81mm mortar ammunition)

  • 장수희;전희주;조인호;윤근식;강민정;박동수
    • 응용통계연구
    • /
    • 제31권5호
    • /
    • pp.611-620
    • /
    • 2018
  • ASRP(Ammunition Stockpile Reliability Program; 저장탄약신뢰성평가) 업무는 인적, 물적 문제로 인하여 모든 탄에 대해 주기적 검사 수행이 어려운 실정으로, 저장탄약 수명예측 연구는 효율적인 ASRP 업무 수행에 기여할 수 있다. 본 연구는 2003년 2016년에 수행한 60,81mm 박격포탄약에 대한 ASRP 결과를 기초로 저장수명 요인을 연구하였다. 기존의 수명예측 연구에서 저장기간을 주요 독립변인으로 분석한 연구방법과는 다르게, 탄약고형태, 기상요인 등 저장환경을 독립변인으로 Cox의 비례위험모형을 활용하여 분석하였다. 그 결과 60, 81mm 박격포탄의 저장수명에 영향을 미치는 요인은 탄약고형태, 최고온도 요인, 강수량 요인으로 분석되었다.

포신 길이와 탄약 압력에 따른 포신 내부 유동 특성 연구 (A Research on Characteristics of Internal Flow Based on the Gun Barrel Length and Ammunition Pressure.)

  • 정희철;김경록;강요한;반영우;정덕형
    • 한국산학기술학회논문지
    • /
    • 제19권11호
    • /
    • pp.513-520
    • /
    • 2018
  • 본 논문은 포신의 길이 및 발사되는 탄약의 압력에 따른 포신 내부 및 배연기의 유동 특성에 대한 연구 내용이다. 탄약 설계 전 포신길이 및 탄약 압력에 따른 배연기의 유동 특성을 분석함으로서 탄약 운용 간 발생할 수 있는 Flareback 현상을 사전에 예방 할 수 있으며, 기존 탄약의 설계 요소인 속도, 정확도, 관통성능, 사거리 외에 운용성 향상을 위한 포신과 탄약의 호환성이 탄약 설계의 주요 요소임을 추가로 도출하였다. 유동 해석 수행 결과 포신 길이가 길고, 사격되는 탄약의 압력이 낮을수록 포신의 배연기 작동시간이 느려져 전투차량 내부로 추진제 가스가 들어올 확률이 높아짐을 확인하였다. 따라서, 본 연구를 통해 확인 된 포신 길이 및 탄약 압력에 의한 배연기 유동 특성 상관관계 해석 기법은 신규 탄약 설계 시 운용성 향상을 위한 주요 요소로 고려되어 탄약의 무게 결정과 추진제 압력 선택에 활용이 가능 할 것으로 판단된다.

항공탄약 구매 비용 절감 방안에 관한 연구 (A Study on the Cost Reduction Strategy of Aviation Ammunition)

  • 김유현;엄정호
    • 안보군사학연구
    • /
    • 통권15호
    • /
    • pp.57-86
    • /
    • 2018
  • The ROKAF has been training for a number of exercise for victory in the war, but the lack of aviation ammunition has become a big issue every year. However, due to the limitation of defense resources, there are many difficulties in securing and stockpiling ammunition for the war readiness. Therefore, there is a need to find a way to secure aviation ammunition for war readiness in a more economical way, so In this study, we analyze the precedent research case and the case of the reduction of the purchase cost of weapon system of other countries, and then I have suggested a plan that is appropriate for our situation. As a result of examining previous research cases for this study, there were data that KIDA studied in 2012, Precision-guided weapons acquisition cost reduction measures pursued by US Air Force And the use of procurement agencies that are being implemented by NATO member countries. Based on this study, the following four measures were proposed to reduce the purchase cost of aviation ammunition. First, the mutual aid support agreement was developed to sign the ammunition joint operation agreement. Second, join the NATO Support & Procurement Agency (NSPA) Third, it builds a purchasing community centered on the countries operating the same ammunition Fourth, participating in the US Air Force's new purchase plan for ammunition and purchase it jointly. The main contents of these four measures are as follows. 1. the mutual aid support agreement was developed to sign the ammunition joint operation agreement. Korea has signed agreements on mutual logistics support with 14 countries including the United States, Israel, Indonesia, Singapore, Australia, and Taiwan. The main purpose of these agreements is mutual support of munitions and materials, also supporting the training of the peace time and promoting exchange and cooperation. However, it is expected that there will be many difficulties in requesting or supporting mutual support in actual situation because the target or scope of mutual aid of ammunition is not clearly specified. Thus, a separate agreement on the mutual co-operation of more specific and expanded concepts of aviation ammunition is needed based on the current mutual aid support agreements 2. join the NATO Support & Procurement Agency (NSPA) In the case of NATO, there is a system in which member countries purchase munitions at a low cost using munitions purchase agencies. It is the NATO Purchasing Agency (NSPA) whose mission is to receive the purchasing requirements of the Member Nations and to purchase them quickly and efficiently and effectively to the Member Nations. NSPA's business includes the Ammunition Support Partnership (ASP), which provides ammunition purchase and disarming services. Although Korea is not a member of NATO, NSPA is gradually expanding the scope of joint procurement of munitions, and it is expected that Korea will be able to join as a member. 3. it builds a purchasing community centered on the countries operating the same ammunition By benchmarking the NSPA system, this study suggested ways to build a purchasing community with countries such as Southeast Asia, Australia, and the Middle East. First, it is necessary to review prospectively how to purchase ammunition by constructing ammunition purchasing community centered on countries using same kind of ammunition. 4. participating in the US Air Force's new purchase plan for ammunition When developing or purchasing weapons systems, joint participation by several countries can reduce acquisition costs. Therefore, if the US Air Force is planning to acquire aviation ammunition by applying it to the purchase of aviation ammunition, we will be able to significantly reduce the purchase cost by participating in this plan. Finally, there are some limitations to the method presented in this study, but starting from this study, I hope that the research on these methods will be actively pursued in the future.

  • PDF

4차산업혁명기술 기반 스마트 탄약물류체계 구축 방안 연구 (Building plan research of Smart Ammunition Logistics System based on the 4th industrial technology)

  • 최종근;김병규;장윤석
    • 인터넷정보학회논문지
    • /
    • 제23권1호
    • /
    • pp.135-145
    • /
    • 2022
  • 본 논문은 국방군수분야에서 가장 중요한 기능을 수행하는 핵심체계인 탄약물류를 4차산업혁명 기술을 활용하여 예측이 가능한 스마트탄약물류시스템을 구축하는 방안을 제시하였다. 국내외 물류정책 및 기술동향, 탄약물류 특성과 국토교통부의 스마트물류센터 인증기준을 고려해 분석한 결과, 군의 탄약물류수준은 매우 낮은 수준으로 시급한 개선이 필요하였다. 이를 개선하기 위해 탄약물류분야에 적용할 수 있는 유무선 기반 현장 자동화, 스마트 탄약고 구축, 육해공군 물류 혁신 등 각종 구축 사례를 분석한 후 도출된 시사점을 기반으로 탄약물류의 발전방향을 제시하였다. 구체적인 발전내용으로 전장 환경 변화에 부합하면서 총수명주기관점의 혁신과 효율성 달성이 가능한 데이터 기반 스마트 탄약물류관리체계를 구현하기 위해 현장업무 자동화 및 첨단화, 3D 기반 저장공간 관리 및 전시 불출 개선, 예측 중심의 탄약물류를 위한 Data 관리체계 등 4가지 목표를 제시했다. 제시된 내용을 기반으로 기대효과로는 작전지속능력 향상, 탄약신뢰성 보장, 많은 예산 절감, 지체와 대기, 이중 작업 등 비효율 대폭 개선, 안전사고 감소 등이 있을 것으로 판단된다.

상호작용 다목적 최적화 방법론을 이용한 전시 탄약 할당 모형 (Ammunition Allocation Model using an Interactive Multi-objective Optimization(MOO) Method)

  • 정민섭;박명섭
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2006년도 추계학술대회
    • /
    • pp.513-524
    • /
    • 2006
  • The ammunition allocation problem is a Multi-objective optimization(MOO) problem, maximizing fill-rate of multiple user troops and minimizing transportation time. Recent studies attempted to solve this problem by the prior preference articulation approach such as goal programming. They require that all the preference information of decision makers(DM) should be extracted prior to solving the problem. However, the prior preference information is difficult to implement properly in a rapidly changing state of war. Moreover they have some limitations such as heavy cognitive effort required to DM. This paper proposes a new ammunition allocation model based on more reasonable assumptions and uses an interactive MOO method to the ammunition allocation problem to overcome the limitations mentioned above. In particular, this article uses the GDF procedure, one of the well-known interactive optimization methods in the MOO liter-ature, in solving the ammunition allocation problem.

  • PDF