• Title/Summary/Keyword: ammonia removal,

Search Result 563, Processing Time 0.02 seconds

Synthesis and Characterization of Zeolite Using Water Treatment Sludge (정수슬러지를 이용한 제올라이트의 합성 및 특성연구)

  • Ko, Hyun Jin;Ko, Yong Sig
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.263-269
    • /
    • 2020
  • Zeolite was synthesized hydrothermally using the water-treatment sludge, and the effects of various synthesis parameters like reaction temperature, reaction time, and Na2O/SiO2 molar ratio on the crystallization of zeolite were investigated. Crystal structure, physical property, and thermal stability of zeolite crystals were characterized by X-ray powder diffraction, FTIR spectroscopy, BET nitrogen adsorption, and TGA measurements. The removal efficiencies of nitrogen in ammonia, heavy metal ions, and TOC were calculated to evaluate zeolite's adsorption capacity. The primary chemical composition of water-treatment sludge was 28.79% Al2O3 and 27.06% SiO2. The zeolites were synthesized by merely employing the water-treatment sludge as silica and alumina sources without additional chemicals. Zeolite crystals synthesized through the water-treatment sludge were confirmed as an A-type zeolite structure. Zeolite A had the highest crystallinity obtained from a gel with the molar composition 2.1Na2O-Al2O3-1.6SiO2-65H2O after 5 h at a temperature of 90 ℃. The specific surface area of zeolite obtained was 55 ㎡ g-1, which was higher than commercial zeolite A. The removal efficiency of nitrogen in ammonia was 68% after 3 h of reaction time, while the removal efficiencies of Pb2+ and Cd2+ ions were 99.1% and 99.3%, respectively. These results indicate active ion exchange between Pb2+ or Cd2+ ion and Na+ ion in the zeolite framework. The adsorption experiments on the different zeolite addition conditions were performed for 3 h with 300 ppm humic acid. Based on the results, TOC's highest efficiency was 83% when 5 g of zeolite was added.

Integrated System of RBC-lime Precipiatation for Simultaneous Removal of Organics and Nutrients (회전원판공정과 화학침전공정 조합을 이용한 유기물과 질소*인의 동시제거)

  • 박종안;허준무;손부순
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.132-140
    • /
    • 1998
  • Laboratory-scale experiments were conducted using a three-stage rotating biological contactor unit followed by lime precipitation and sedimentation with effluent recycle to the first stage. The purpose of this study was to evaluate the effects of hydraulic loadings of 0.031-0.076 $m^3/m^2/d and recycle ratio of 1 to 3 on the simultaneous removal of organics and nutrients from domestic wastewater. Lime was added to maintain pH of 10.4-11.0 in the coagulation-flocculation reactor. Results showed that the highest nitrogen removal rate of 70.5% occurred at the lower hydraulic loading of 0.031 $m^3/m^2/d at a recirculation rate of 300%, and similarly, highest nitrification occurred at the same hydraulic loading and recycle ratio. Concentration of ammonia nitrogen in the effluent was less than 1 mg/l at the same operating conditions for higher nitrogen removal. Whereas, high BOD and COD removal was observed at hydraulic loading rate of 0.054 $m^3/m^2/d, and high removal of organic matter was evident from the consistent low COD and BOD value. Results obtained from the operating condition of higher loading rate, 300% of recycle rate showed the highest removals. Increasing in recycle rate and hydraulic loading rate increased the volatile solids fraction of the sludges generated to the extent of 47% at 0.076 $m^3/m^2/d hydraulic loading and 300% recirculation rate. Since pH in the flocculator was maintained at the pH of 10.4-11.0, above 90% removal of phosphorus was obtained. Average concentration of suspended solids was always maintained over 40 mg/l in the effluent. Therefore an RBC unit operating at a hydraulic loading near 0.031 $m^3/m^2/d with a recycle rate of 300% is a viable and feasible alternate conditions to produce an effluent with relative low organic matter and phosphorus, provided that there is a neutralization unit to control the pH and SS of the effluent.

  • PDF

The adsorption efficiency of ceramic filter media prepared with the steel-making slag for the removal of VOCs (휘발성 유기화합물 제거를 위한 제강슬래그로 제조된 세라믹 여재의 흡착효율)

  • Sin, Jun-Ho;Kim, Tae-Heui;Park, Kyung-Bong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.3
    • /
    • pp.153-157
    • /
    • 2010
  • We studied the adsorption efficiency of steelmaking slag in removing volatile organic compounds (VOCs) for increasing the recycling rate of steel-making slag. Ceramic filter was prepared by mixing the steel-making slag and the diatomite which is used as adsorbents due to the advantage of the high specific surface area and regular mesopores. The adsorption efficiency for VOCs removal was about 80%, 96% and 85% in acetaldehyde, formaldehyde and ammonia, respectively. The adsorption efficiency over 80% for all The gases showed the practical possibility as the adsorption filter.

Waste treatment with the pilot scale ATAD and EGSB pig slurry management system followed by sequencing batch treatment

  • Lee, Young-Shin;Han, Gee-Bong
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.277-284
    • /
    • 2015
  • Experiments for highly concentrated contaminants in pig waste slurry were carried out for the feasibility test of a pilot-scale innovative process scheme of engaging autothermal thermophilic aerobic digestion (ATAD) and expended granular sludge bed (EGSB) followed by sequencing batch reactor (SBR) system. Contaminants in pig waste slurry such as organic substance, total nitrogen (TN), ammonia nitrogen and total phosphorus (TP) contents were successfully reduced in the system. Total volatile solids (TVS) and chemical oxygen demands (COD) for organic matter in the feed were 32.92 g/L and 42.55 g/L respectively, and they were reduced by about 98.7% and 99.2%, respectively in the system. The overall removal efficiencies for TN and ammonium nitrogen were found to be 98.1 and 98.5%, respectively. The overall removal efficiency for total phosphorus was also found to be 92.5%. Faecal coliform density was reduced to <$1.2{\times}10^4CFU/g$ total solids. Biogas and $CH_4$ were produced in the range of 0.39-0.85 and $0.25-0.62m^3/kg$ [VS removed], respectively. The biogas produced in the system comprised of $295{\pm}26ppm$ (v/v) [$H_2S$].

Nitrification and Denitrification by Using a Sequencing Batch Reactor System (Sequencing Batch Reactor (SBR)를 이용한 질산화와 탈질산화)

  • PARK Jong-Ho;LEE Won-Ho;CHO Kyu-Seok;HWANG Gyu-Deok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.3
    • /
    • pp.247-253
    • /
    • 2003
  • Sequencing Batch Reactor (SBR) was operated under various experimental conditions to improve the efficiency of biological filters used for the treatment of recycled wastewater from aquaculture. This SBR system was operated for removing COD, ammonia and suspended solid that were the major pollutants in aquaculture wastewater. Aerobic and anoxic conditions after FILL mode were applied intermittently for effective removal of nitrogen. SETTLE and DRAW modes were followed by the complete aerobic and anoxic REACT mode. The total volume of the SBR was 75 liter, while the working volume in a cycle was 35 liters. When the final operating strategy of the SBR was FILL/REACT/SETTLE/DRAW of 0.5/10/1/0.5 hr. the removal efficiencies of TCODcr, $NH_{4}^{+}-N,$ and T-N were 94, 98, and $89\%,$ respectively.

오존 전처리 공정이 생물활성탄 공정의 효율에 미치는 영향

  • Lee, Sang-Hun;Mun, Sun-Sik;Sin, Jong-Cheol;Choe, Gwang-Geun;Park, Dae-Won;Sim, Sang-Jun;Lee, Jin-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.361-364
    • /
    • 2002
  • BAC (biological activated carbon) process is a combination of biodegradation and active carbon adsorption. Pre-ozonation of raw water increased in biodegradable organic fraction. This study is to investigate the enhancement of dissolved organic matter removals by pre-ozonation process combined with BAC process at a semi-pilot scale. By biodegradation improvement in pre-ozonation process. the charge of adsorption was reduced and the life of biological activated carbon is extended. And, 48 % of total DOC was remove in the upper compartment of BAC column. The removal of the nitrogen-ammonia shows a considerably high removal ratio with 75.9 %.

  • PDF

Removal of NO Using CuO/3Al2O3 · 2SiO2 Catalyst Impregnated Ceramic Candle Filters (산화구리 촉매담지 세라믹 캔들필터를 이용한 NO 제거)

  • 홍민선;문수호;이재춘;이동섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.291-302
    • /
    • 2004
  • The CuO/$3AL_2O_3{\cdot}2SiO_2$ catalyst impregnated ceramic candle filters for nitrogen oxides removal were prepared by porous mullite($3AL_2O_3{\cdot}2SiO_2$) support and CuO catalyst deposited on this support to achieve uniformly dispersed CuO deposition, which are impregnated into the pores of available alumino-silicate ceramic candle filter. The CuO/3$AL_2O_3{\cdot}2SiO_2$ catalyst impregnated ceramic candle filters were characterized by XRD, BET, air permeability, pore size, SEM and catalytic tests in the reduction of NOx by NH$_3$. The observed effects of CuO/3$AL_2O_3{\cdot}2SiO_2$ impregnated ceramic candle filters in SCR reaction are as follows : (1) when the content of CuO catalyst increased further, activity of NO increased. (2) NO conversion at first increased with temperature and then decreased at high temperatures (above 40$0^{\circ}C$), possibly due to the occurrence of the ammonia oxidation reaction. (3) In pilot plant test for 3 months, NO conversion was greater than 90%.

Nitritation Characteristics Depending on Influent Nitrogen Concentration in a Biological Aerated Filter (Biological Aerated Filter에서 유입 질소농도에 따른 아질산화 특성)

  • Yoo, Ik-Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The purpose of this study was to investigate the nitrification characteristics of biological aerated filter (BAF) packed with ceramic media, especially focusing on nitrite build-up during nitrification. When increasing the nitrogen load above $1.63kgNH_4{^+}-N/m^3{\cdot}d$, ammonium removal efficiency decreased to less than 60% and the nitrite ratio ($NO_2{^-}-N/NO_x-N$) of higher than 75% was achieved due to the inhibitory free ammonia (FA, $NH_3-N$) concentration and oxygen limitation. FA inhibition, however, is not recommended strategy to promote nitrite build-up since FA concentration in the reactor is coupled with decreased ammonium removal efficiency. Nitrite ratio in the effluent was also affected by aeration rate and influent ammonium concentration. Ammonium oxidation was enhanced at a higher aeration rate regardless of influent ammonium concentration but, the nitrite ratio was dependent on both aeration rate and influent ammonium concentration. While a higher nitrite ratio was obtained when BAFs were fed with $50mgNH_4{^+}-N/L$ of influent, the nitrite ratio significantly decreased for a greater influent concentration of $200-300mgNH_4{^+}-N/L$. Taken together, aeration rate, influent ammonium concentration and FA concentrations kept in the BAF were found to be critical variables for nitrite accumulation in the BAF system.

A study on the Effect of SOB(Sulfur-Oxidizing Bacteria) Media on the Removal of Hydrogen Sulfide in Water of Septic Tank (SOB(Sulfur Oxidizing Bacteria) Media가 정화조의 수중황화수소 제거에 미치는 영향에 관한 연구)

  • Song, Homyeon;Cho, Jeongil;Kim, Taeksoo;Kwon, Sucheol;Yu, Hyeongsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.59-67
    • /
    • 2013
  • The odor occurring in the sewage system induces the displeasure, the disgust such as the headache, the vomit, etc. and increases the spiritual stress and disturbs the pleasant life of residents. These odors occur mainly in the area of combined sewage system treatment, being created in the personal sewage treatment plant such as septic tank and are incoming to sewage pipes and emitted to the outside through the manhole and the receiver, etc.; and this causes odors to the people. The Hydrogen Sulfide, the Methyl Mercaptan, the Ammonia, etc. are materials causing the odor, the more serious issue of odor is occurring since the septic tank of degradation process is being applied. The primary cause of odor is the decomposition of human feces in the septic tanks and sewage disposal facilities. The purpose of this study is reduction of hydrogen sulfide using air supplying and SOB(Sulfur-Oxidizing Bacteria). As a result of this study of the air supply system and the SOB media equipment by air supply, in case the air is injected to SOB media compared to the injection of air only, the removal efficiency the hydrogen sulfide was average 3.4 times higher.

A Study on Equilibrium of $NH_4NO_{3(s, aq)}-HNO_{3(g)}-NH_{3(g)}$ in Urban Atmosphere (도시 대기중에서 $NH_4NO_{3(s, aq)}-HNO_{3(g)}-NH_{3(g)}$의 평형에 관한 연구(II))

  • 천만영;이영재;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.154-159
    • /
    • 1993
  • Theoretical prediction of the equilibrium of temperature and relative humidity dependance involving $HNO_{3(g)}-NH_{3(g)}$ and $NH_4NH_{3(s, aq)}$ was compared with atmospheric measurement of particulate nitrate$(NO_3^-)$, Ammonia-Nitric Acid partial pressure product $([$NH_{3(g)}][HNO_{3(g)}]ppb^2$) by a triple filter pack sampler from Oct 1991 to July 1992. The measured $HNO_3NH_3$ concentration product K was greater than equilibrium constant $K_p$ calculated from thermodynamic data of $NH_4NO_{3(s, aq)}-HNO_{3(g)}-NH_{3(g)}$ during fall, winter and spring. But K was lower than $K_p$ in summer. K was greater than $K_p$ as the result of supersaturation by air pollution, particularly anthropogenic $NH_3$.The reason of $K < K_p$ was due to removal of particulate nitrate$(NO_3^-)$ by rainout and washout. $NH_4NO_3$ which consists mainly of particulate nitrate is formed by reaction between $HNO_3$ and $NH_3$. As a result of the removal of particulate nitrate$(NO_3^-)$ by rainout and washout, concentrations of $HNO_3$ and $NH_3$ are decreased by equilibrium transfer(Le Chatelier's Law) in atmosphere.

  • PDF