• Title/Summary/Keyword: ammonia nitrogen

Search Result 1,143, Processing Time 0.031 seconds

Changes of Nitrogeneous Compounds Depending upon the Curing Methods in Burley Tobacco (버어리종 건조방법에 따른 질소화합물의 변화)

  • 백순옥;한상빈;배성국
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.25 no.1
    • /
    • pp.27-33
    • /
    • 2003
  • This study was conducted to determine the changes of nitrogen compounds in lamina and midrib during the curing process with the different curing methods, such as priming and stalk-cut curing. After KB 108 burley tobacco was cultivated by the different fetilization levels such as standard and 20% higher, only the tips and leaf were harvested. Though the contents of total alkaloid and total nitrogen were similar in lamina, midrib showed a very low contents of those components by the different curing method and fertilization levels. The content of nitrate-nitrogen in lamina increased during a middle of curing process, and then these compound was decreased during an end of curing process by stalk-cut curing method. Nitrate-nitrogen contents in the lamina by the priming curing showed a high level caused by rapid drying process during an end of curing process. That component in midrib was 5-6 times higher than that of lamina. The contents of ammonia-nitrogen in the lamina and midrib were increased during a curing process. Though those amount in tips showed a similar by a different fetilization and curing method, midrib of stalk-cut curing showed a slow increasing during a curing process.

Simulated Nitrogen Removal for Double-Layered PVA/Alginate Structure for Autotrophic Single-Stage Nitrogen Removal (2중 구조의 PVA/alginate 겔 비드에서의 독립영양 단일공정 질소제거효율 시뮬레이션)

  • Bae, Hyokwon
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.4
    • /
    • pp.171-176
    • /
    • 2022
  • Recently, an autotrophic single-stage nitrogen removal (ASSNR) process based on the anaerobic ammonium oxidation (ANAMMOX) reaction has been proven as an economical ammonia treatment. It is highly evident that double-layered gel beads are a promising alternative to the natural biofilm for ASSNR because of the high mechanical strength of poly(vinyl alcohol) (PVA)/alginate structure and efficient protection of ANAMMOX bacteria from dissolved oxygen (DO) due to the thick outer layer. However, the thick outer layer results in severe mass transport limitation and consequent lowered bacterial activity. Therefore, the effects of the thickness of the outer layer on the overall reaction rate were tested in the biofilm model using AQUASIM for ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB) and ANAMMOX bacteria. A thickness of 0.5~1.0 mm is preferred for the maximum total nitrogen (TN) removal. In addition, a DO of 0.5 mg/L resulted in the best total nitrogen removal. A higher DO induces NOB activity and consequent lower TN removal efficiency. The optimal density of AO B and NO B density was 1~10% for a 10% ANAMMOX bacterial in the double-layered PVA/alginate gel beads. The real effects of operating parameters of the thickness of the outer layer, DO and concentrations of biomass balance should be intensively investigated in the controlled experiments in batch and continuous modes.

NITROGEN EXCRETION IN THE BIVALVE MOLLUSCS (이매패의 질소배설 2. 굴)

  • CHIN Pyung;LEE Bok Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.4
    • /
    • pp.293-296
    • /
    • 1979
  • The effects of temperature and salinity on tile rates of ammonia and amino nitrogen excretion, and oxygen consumption were measured for Crassostrea gigas. There was variability with temperature and salinity changes in both the rates of nitrogen excretion and the proportionality between ,ammonia and amino acids in the excreta, and also in the rates of oxygen consumption. Rates of nitrogen excretion and oxygen consumption were markedly decreased with increase in salinity, especially at high salinity-high temperature, whereas at low salinity-high temperature condition they were significantly increased. These changes are considered as the responses of physiological tolerances to the high temperature stress and the results of the metabolic temperature compensation at the low salinity-high temperature condition. Most of nitrogenous excretory products was ammonia, and large amounts of amino-nitrogen was excreted, and especially the rate of amino-nitrogen excretion was dominant at $32.5\%_{\circ}-22^{\circ}C$. The amounts of amino-nitrogen excreted by animals were decreased in the medium of high salinity and increased in the medium of low salinity through the experimental temperature. The atomic ratios of oxygen consumed to ammonia-nitrogen excreted (O: N ratio) was low at the low temperature $(15^{\circ}C)$, and was high at $22^{\circ}$ and $29^{\circ}C$ in the medium of 32.5 and $37.5\%_{\circ}$ but low in the low salinity $27.5\%_{\circ}$.

  • PDF

The Effect of the Reaction Time Increases of Microbubbles with Catalyst on the Nitrogen Reduction of Livestock Wastewater (가축분뇨의 마이크로버블과 촉매와의 반응 시간 증가에 따라 질소 제거에 미치는 영향)

  • Jang, Jae Kyung;Sung, Je Hoon;Kang, Youn Koo;Kim, Young Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.10
    • /
    • pp.578-582
    • /
    • 2015
  • It was investigated whether the removal of nitrogen ions included livestock wastewater were increased by increasing the reaction time of livestock wastewater and microbubbles with catalyst. For this study, the nitrogen reduction system using microbubbles with catalyst was used. The two reactors were consecutively arranged, and the second reactor (Step 2) was located to next the first reactor (Step 1). Each reactor was reacted for 2 hours and air or oxygen as oxidant was fed into the reactor during operation before microbubble device. When oxygen was used, ammonia nitrogen was removed each 18.3% and 52.8% during 2 (only step 1) and 4 (step 1 and step 2) hours reactions. This value was higher than that of when air was fed. When oxygen was used, the longer the reaction time, the ammonia nitrogen removal was higher. The longer the reaction time, the higher the nitrite and nitrate was also removed such as ammonia nitrogen. Also this system was examined whether organic matter removal is effective. The total chemical oxygen demand (TCOD) removal was higher than the soluble chemical oxygen demand (SCOD). Some materials among causing substances COD were difficult to decompose biologically. Therefore, it means that it will be easy to operate the biological processes following step and reduce the concentration of organic contaminants in effluent.

Growth of GaN on sapphire substrate by GSMBE(gas source molecular beam epitaxy) using ammonia as nitrogen source (Nitrogen source로 ammonia를 사용해 GSMBE로 성장된 GaN 박막 특성)

  • Cho Hae-jong;Han Kyo-yong;Suh Young-suk;Misawa Yusuke;Park Kang-sa
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.501-504
    • /
    • 2004
  • High quality GaN layer was obtained on 0001 sapphire substrate using ammonia($NH_3$) as a nitrogen source by gas source molecular beam epitaxy. As a result, RHEED is used to investigate the relaxation processes which take place during the growth of GaN. In-situ RHEED(reflection high electron energy diffraction) appeared streaky-like pattern. The full Width at half maximum of the x-ray diffraction(FWHM) rocking curve measured from plane of GaN has exhibited as narrow as 8arcmin and surface roughness was 7.83nm. Photoluminescence measurement of GaN was investigated at room temperature, where the intensity of the band edge emission is much stronger than that of deep level emission. The GaN epitaxy layer according to various growth condition was investigated.

  • PDF

Effect of Increasing Amounts of Ammonium Nitrogen Induced by Consecutive Mixture of Poultry Manure and Cattle Slurry on the Microbial Community during Thermophilic Anaerobic Digestion

  • Alsouleman, Khulud
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1993-2005
    • /
    • 2019
  • Thermophilic anaerobic digestion (TAD) is characterized by higher biogas production rates as a result of assumedly faster microbial metabolic conversion rates compared to mesophilic AD. It was hypothesized that the thermophilic microbiome with its lower diversity than the mesophilic one is more susceptible to disturbances introduced by alterations in the operating factors, as an example, the supply of nitrogen-rich feedstock such as poultry manure (PM). Laboratory scaled TAD experiments using cattle slurry and increasing amounts of PM were carried out to investigate the (in-) stability of the process performance caused by the accumulation of ammonium and ammonia with special emphasis on the microbial community structure and its dynamic variation. The results revealed that the moderate PM addition, i.e., 25% (vol/vol based on volatile substances) PM, resulted in a reorganization of the microbial community structure which was still working sufficiently. With 50% PM application, the microbial community was further stepwise re-organized and was able to compensate for the high cytotoxic ammonia contents only for a short time resulting in consequent process disturbance and final process failure. This study demonstrated the ability of the acclimated thermophilic microbial community to tolerate a certain amount of nitrogen-rich substrate.

NUTRITIVE VALUE OF NAPIER GRASS (PENNISETUM PURPUREUM SCHUM.) SILAGE ENSILED WITH MOLASSES BY GOATS

  • Yokota, H.;Okajima, T.;Ohshima, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.1
    • /
    • pp.33-37
    • /
    • 1992
  • Napier grass (Pennisetum purpureum Schum.) harvested at an early growth stage was ensiled with 4% of molasses in a polyethylene bag silo which contained 15 kg of chopped forage each. Dry matter (DM) content of the silage was so low as 14.75%, although chemical quality of the silage was very high. Ratio of ammonia nitrogen to total nitrogen was 6.59%, and the pH value of the silage was 3.79. Nutritive value of the silage was estimated using goats and compared to that of a timothy hay as a reference ration. Feeding level of each rations was adjusted to a level of nitrogen (N) recommendation. DM and N digestibilities of the silage were 65.0 and 54.5%, respectively, but those of the timothy hay were 37.6 and 37.2%. Feeding of the napier grass silage maintained body weight and kept positive N retention. Ammonia N concentration in the rumen fluid in goats fed the napier grass silage increased after feeding, but blood urea concentration was constant. Feeding of the timothy hay did not increase ammonia N concentration in the rumen fluid, but increased blood urea concentration. These facts indicated that the napier grass silage had enough digestible DM and N for maintenance ration to goats.

Performance and Operation of Biological Activated Carbon (생물활성탄접촉조의 성능과 조작)

  • Lee, Gangchoon;Yoon, Taekyung
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.83-90
    • /
    • 2006
  • Performance and operation of BAC in ozone-BAC advanced water treatment process were investigated using the pilot scale test plant built in D water purification plant. The performance was evaluated by the removal efficiencies of DOC, BDOC, ammonia nitrogen and THMs. The effect of EBCT on DOC removal was experimented for an effective operating condition, and the amount of attached biofilm was analyzed in various water temperatures and position of BAC. Two removal mechanisms, adsorption and biological decomposition by attached biofilm, were predominant to decrease the concentration of various contaminants. DOC was removed 40%, and the removal rate was decreased in winter time due to the lowered activity of attached biofilm. BDOC was effectively removed. THMs and ammonia nitrogen were mainly removed not in ozonation process but in BAC. Water temperature deeply influenced in removal efficiency of ammonia nitrogen. The amount of attached biofilm depended on water temperature and height of packed activated carbon column. Considering DOC removal efficiency and design EBCT of commercial BAC plant, the proper EBCT was 12.5 minutes.

Removal of $NH_4-N$ from Synthetic Wastewater Using Soil Column (토양컬럼을 이용한 합성폐수중의 암모니아성질소 제거)

  • Park San Ill;Cheong Kyung Hoon;Kim Hai Yeon;Paik Ke Jin
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.4 s.85
    • /
    • pp.280-286
    • /
    • 2005
  • The purpose of this investigation was to evaluate removal efficiency of $NH_4-N$ using the soil column. Soil, oyster shell and natural zeolite were used as a supporting media of soil column. Removal efficiencies of $NH_4-N$ were $35.9\%,\;41\%\;and\;93.4\%$ for the soil column packed with soil, natural $zeolite(20\%)$ and oyster $shell(20\%)$ at HRT of 72 hours, respectively. The addition of $20\%$ oyster shell to the soil accelerated nitrification in soil column. The influent ammonia nitrogen was mostly converted to nitrate nitrogen in the soil column and little ammonia nitrogen was found in the effluent. When the influent $NH_4-N$ concentration was 200 mg/l, the NIL-N removal was decreased at HRT of 48 hours, while nitrification was significantly increased after mechanical aeration. It was suggested that nitrification from higher $NH_4-N$ concentration was more affected by aeration in soil column process. The number of nitrifiers was approximately in a level of about $10^6\;MPN/g{\cdot}soil$ in the soil column mixed with oyster shell ($20\%$).

Influence of oxytetracycline on the fate of Nitrogen species in a recirculating aquaculture system

  • Medriano, Carl A.D.;Yoon, Hyojik;Chandran, Kartik;Khanal, Samir.K.;Lee, Jaewoo;Cho, Yunchul;Kim, Sungpyo
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.123-128
    • /
    • 2018
  • Common aquaculture practices include the use of certain pharmaceuticals such as antibiotics in avoiding diseases and promoting a healthier growth of the culture. The aim of this study is to monitor and assess the influence of different low oxytetracycline concentrations on the transformation of nitrogen compounds under aeration condition in a lab-scale recirculating aquaculture system (RAS). Over $1mg\;L^{-1}$ dose of oxytetracycline to aquaculture had induced ammonia($NH_4-N$), nitrate($NO_3-N$), soluble COD accumulation in RAS. In addition, nitrous oxide ($N_2O$) emission from RAS was significantly reduced during the oxytetracycline dose periods. After ceasing the dose of oxytetracycline, ammonia oxidation and nitrous oxide re-emission were observed. This observation indicated that low concentrations of oxytetracycline could affect the nitrogen species in RAS. Also, the emission mechanisms of $N_2O$ may not be only dependent on nitrification process but also dependent on denitrification process in our RAS system.