• Title/Summary/Keyword: ammonia nitrogen

Search Result 1,143, Processing Time 0.029 seconds

Preferential Decomposition of Nitrogen during Early Diagenesis of Sedimentary Organic Matter (퇴적물 내 유기물의 초기 속성 작용에 나타난 유기 질소의 선택적 분해)

  • Han, Myung-Woo;Lee, Khang-Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.2
    • /
    • pp.63-70
    • /
    • 2001
  • Changes in concentrations of dissolved oxygen, ammonia, nitrate, pH, Fe and Mn were monitored from the laboratory incubation of an benthic chamber. The extent of sedimentary organic carbon and nitrogen decomposition was quantified by applying the concentration data to the chemical reaction equations of early diagenesis. The patterns of the concentration changes, observed during the 237 hr long incubation experiment, made it possible to divide the entire experiment period into four characteristic sub-periods (0-9 hr, 9-45 hr, 45-141hr, 141-237 hr). C/N ratio, estimated for each sub-period, was 6.63, 1.49, 0.81 and 0.02, respectively. This sequential decrease in C/N ratio suggests that during the incubation experiment dissolved nitrogen species diffuse more out of the sediment than dissolved carbon species. Greater diffusion of nitrogen indicates the preferential decomposition of organic nitrogen during early diagenesis of sedimentary organic matter. Comparison of the concentration data (sedimentary organic carbon and nitrogen, porewater organic carbon and ammonia)between the sediment pre and post incubation also indicates the preferential decomposition of nitrogen during early diagenesis of sedimentary organic matter.

  • PDF

Residual frying oil in the diets of sheep: intake, digestibility, nitrogen balance and ruminal parameters

  • Peixoto, Eduardo Lucas Terra;Mizubuti, Ivone Yurika;Ribeiro, Edson Luiz de Azambuja;Moura, Elizabeth dos Santos;Pereira, Elzania Sales;Prado, Odimari Pricila Pires do;Carvalho, Larissa Nobrega de;Pires, Kassia Amariz
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.51-56
    • /
    • 2017
  • Objective: The objective of this study was to evaluate the intake and nutrient digestibility, nitrogen balance and ruminal ammonia nitrogen in lambs of diets containing different levels of residual frying oil. Methods: Levels of 0, 20, 40, 60, and 80 g/kg dry matter (DM) base of residual frying oil in the diets of lambs were evaluated. Five castrated lambs with initial body weights of $36.8{\pm}3.3kg$, distributed in a Latin square ($5{\times}5$) design, were used. Results: There was a decreasing linear effect on the intake of DM, organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), total carbohydrates (TCH), and nonfibrous carbohydrates (NFC). There was an increased linear intake of ether extract (EE). The apparent digestibility of DM, OM, CP, NDF, TCH, and NFC, as well as urine nitrogen excretion, nitrogen balance and ruminal parameters, were not influenced by different levels of residual frying oil in the diet. EE digestibility presented a crescent linear effect. Conclusion: It can be concluded that the addition of residual frying oil to the diets of sheep can affect nutrient intake without affecting the digestibility of most nutrients (with the exception of EE), nitrogen balance and ruminal ammonia nitrogen concentration.

Effects of Synchronizing the Rate of Dietary Energy and Nitrogen Release on Ruminal Fermentation, Microbial Protein Synthesis, Blood Urea Nitrogen and Nutrient Digestibility in Beef Cattle

  • Chumpawadee, Songsak;Sommart, K.;Vongpralub, T.;Pattarajinda, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.181-188
    • /
    • 2006
  • The objective of this research was to determine the effects of synchronizing the rate of dietary energy and nitrogen release on: ruminal fermentation, microbial protein synthesis, blood urea nitrogen, and nutrient digestibility in beef cattle. Four, two-and-a-half year old Brahman-Thai native crossbred steers were selected for the project. Each steer was fitted with a rumen cannula and proximal duodenal cannula. The steers were then randomly assigned in a $4{\times}4$ Latin square design to receive four dietary treatments. Prior to formulation of the dietary treatments, feed ingredients were analyzed for chemical composition and a nylon bag technique was used to analyze the treatments various ingredients for degradability. The treatments were organized in four levels of a synchrony index (0.39, 0.50, 0.62 and 0.74). The results showed that dry matter digestibility trend to be increased (p<0.06), organic matter and acid detergent fiber digestibility increased linearly (p<0.05), while crude protein and neutral detergent fiber digestibility were not significantly different (p>0.05). Higher concentration and fluctuation of ruminal ammonia and blood urea were observed in the animal that received the lower synchrony index diets. As the levels of the synchrony index increased, the concentrations of ruminal ammonia nitrogen and blood urea nitrogen, at the 4 h post feeding, decreased linearly (p<0.05). Total volatile fatty acid and bacteria populations at the 4 h post feeding increased linearly (p<0.05). Microbial protein synthesis trend to be increase (p<0.08). The results of this research indicate that synchronizing the rate of degradation of dietary energy and nitrogen release improves ruminal fermentation, microbial protein synthesis and feed utilization.

INTRACELLULAR AMINO ACID PROFILE OF RUMEN BACTERIA AS INFLUENCED BY UREA FEEDING AND ITS DURATION

  • Kobayashi, Y.;Wakita, M.;Hoshino, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.4
    • /
    • pp.619-622
    • /
    • 1993
  • Rumen bacterial amino acids in sheep on urea diet were monitored to assess a possible change in amino acid synthesis as a long term response to high rumen ammonia environment. A sheep was fed a semipurified diet with soybean meal, followed by a diet with urea as a main nitrogen source. Mixed rumen bacteria were harvested from ruminal fluid taken 3 h after feeding (twice in soybean meal feeding and 6 times in urea feeding) and fractionated as cell wall, proteins and protein-free cell supernatant of monitor amino acids in each fraction. Ruminal ammonia concentration at the sampling ranged from 5.7 to 39.5 mgN/dl. Cell wall and protein fractions of mixed rumen bacteria were stable in their amino acid composition regardless of nitrogen sources of diet and the feeding duration. However, protein-free cell supernatant fraction showed a higher alanine proportion with urea feeding (18.6 and 28.2 molar % of alanine for samples from sheep fed soybean meal and urea, respectively) and its duration (20.6 and 32.9 molar % for samples from sheep on urea diet for 1 and 65 days, respectively). Total free amino acid level of bacteria was depressed in the initial period of urea feeding but restored on 65th day of the feeding. These results suggest that an alanine synthesizing system may develop in rumen bacteria as urea feeding becomes longer.

Emission characteristic of ammonia in cement mortars using different sand from area of production

  • Jang, Hongseok;So, Hyoungseok;So, Seungyoung
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.241-246
    • /
    • 2016
  • This paper discusses the influence of organic matter contained in aggregate on the emission characteristic of ammonia ($NH_3$) from cement mortar. $NH_3$ can be released to indoor-outdoor environment through diffusion in mortar (or concrete) and have resulted in the increasing air pollution, and especially well known as a harmful gas for the human body. The concentration of $NH_3$ released from cement concrete was then compared to the contents of organic matter contained in the aggregate. The result indicates that the contents of organic matter in the aggregate significantly differ with types of aggregate from different areas of production. The organic matter becomes organic nitrogen through the process of microbial breakdown for a certain period and pure ammonium ion ($NH_4{^+}$) is produced from the organic nitrogen. The $NH_4{^+}$ was reacted with alkaline elements in the cement and released as $NH_3$ from cement concrete through a volatile process. The released $NH_3$ was proportional to the contents of $NH_4{^+}$ adsorbed in the aggregate from different areas of production and the concentrations of $NH_3$ emission from cement mortar according to the aggregate differ by more than 4 times.

Effect of Ensiling Sudax Fodder with Broiler Litter and Candida Yeast on the Changes in pH, Lactic Acid and Nitrogen Fractions

  • Rasool, S.;Gilani, A.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.1
    • /
    • pp.98-105
    • /
    • 1997
  • Sudax fodder (Sorghum sudanense ${\times}$ Sorhum vulgare) was ensiled in laboratory silos with or without 20, 30, or 40 percent broiler litter and 6 percent molasses with or without Candida yeast. The samples were analyzed for pH, lactic acid and nitrogen fractions at the start of the experiment and at 5 days interval, thereafter till 40 days. A sharp decline in pH and increase in lactic acid content was observed on fifth day of ensiling. Thereafter, the rate of pH decline decreased till 20 days and that of lactic acid increase till 25 days and the remained constant. Increasing levels of broiler litter had adverse effect on pH drop and lactic acid increase of silages. Total-N content of the silages had little variation throughout the ensiling period. A sharp decline in protein-N and increase in ammonia-N content was observed on day 5 of ensiling. Thereafter, the content of protein-N increased till 20 days and that of ammonia-N decreased till 15 days, but these changes were very small compared to that occurred during the first 5 days of ensiling. The level of broiler litter had inverse relationship with protein degradation and direct relationship with ammonia production. The yeast inoculum failed to produce any significant effect.

Changes in an Ammonia-like Odor and Chondroitin Sulfate Contents of Enzymatic Hydrolysates from Longnose Skate (Rasa rhina) Cartilage as Affected by Pretreatment Methods

  • Choi, Joo-Hyun;Woo, Jin-Wook;Lee, Yang-Bong;Kim, Seon-Bong
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.645-650
    • /
    • 2005
  • To reduce ammonia-like odor in chondroitin sulfate, longnose skate (Rasa rhina) cartilage was processed by washing, autoclaving, and alkali pretreatments. Content of total volatile basic nitrogen (TVB-N), index of ammonia-like odor, of raw skate cartilage without pretreatment was 254 mg/100 g, whereas those of skate cartilage pretreated with washing and autoclaving increased to 630 and 636 mg/100 g, respectively. TVB-N of skate cartilage pretreated with sodium hydroxide sharply decreased to 15 mg/l00 g at optimal condition of 0.12 M and 3.6 volume of NaOH, as determined by surface response methodology of central composite design for optimization. Alkali pretreatment resulted in 97.6% deodorizing. Washing and autoclaving pretreatments had almost no effect on the yield of chondroitin sulfate (approximately 30%), whereas decreased to 16.0% after alkali pretreatment, showing chondroitin sulfate of skate cartilage as chondroitin sulfate C.

Estimation of Ammonia Emission During Composting Iivestock Manure Based on the Degree of Compost Maturity (축분 퇴비화 과정 중 퇴비 부숙도를 고려한 암모니아 발생량 산정)

  • 김기연;최홍림;고한종;김치년
    • Journal of Animal Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.123-130
    • /
    • 2006
  • Principal aim of this study is to suggest the statistical equation model which can predict an amount of ammonia emission according to the degree of compost maturity during composting livestock manure. Composting process was classified with intial, midterm and final phase based on germination index of compost samples. Total Kjeldahl nitrogen(TKN) and organic matter(OM) were selected as the independent variables available to contribute to ammonia emission from composting pile. Ammonia concentration measured in the samples taken at the intial phase was about 10ppm, sharply increased to 50ppm at the midterm phase, and gradually decreased to about 10ppm. The contents of Total Kjeldahl nitrogen and organic matter through whole composting period were ranged from 0.6 to 1.2% and from 30 to 40%, respectively, were reduced slightly at the midterm phase, but generally showed no constant fluctuation pattern. In estimating ammonia emission with application of the statistical equation model, the coefficients of independent variables at the midterm phase when an average concentration of ammonia was highest showed a relatively high values whereas those at the initial phase when an that of ammonia was lowest indicated a relatively low values. However, no statistical significance was found in the coefficients of independent variables and the equation model. Additionally, the further research, which can include the considerable analysis data with more samples taken than this study, is needed in order to suggest the statistically significant equation model available to predict ammonia emission during composting process.

Effects of Body Weight and Dietary Protein Level on Ammonia Excretion by the Nile tilapia Oreochromis niloticus (나일틸라피아의 암모니아 배설에 미치는 어체중과 사료 내 단백질 함량의 영향)

  • Oh, Sung-Yong;Jo, Jae-Yoon
    • Journal of Aquaculture
    • /
    • v.18 no.2
    • /
    • pp.122-129
    • /
    • 2005
  • Ammonia is the major limiting factor in intensive aquaculture production systems. Therefore, quantification of ammonia excretion is important for the water quality management in aquaculture systems. Ammonia excretion is known to be affected by many factors such as body weight and dietary protein level (DPL). In this study, experiments were carried out to investigate the effects of body weight and DPLs on the rates of ammonia excretion of Nile tilapia Oreochromis niloticus. Three sizes of fishes (mean initial weight; 4.8 g,42.7 g and 176.8 g) were fed each of two dietary protein levels (30.5% and 35.5%). Daily feeding levels for the three fish sizes of 4.8 g, 42.7 g and 176.8 g were 6%, 3%, and 1.5% body weight per day, respectively. Each group of fish was stocked in a 17.1-L aquarium and all treatments were triplicated. Following feeding, the weight-specific ammonia excretion rate of O. niloticus increased, peaked at 4 to 8 h, and returned to pre-feeding levels within 24 h. Total ammonia nitrogen (TAN) excretion.ate per unit weight decreased with the increase of fish weight for each diet (P<0.05). The TAN excretion rate increased with increasing dietary protein content for each fish size (P<0.05). TAN excretion rates (Y) for each diet with different fish weights were described by the following equations: low DPL diet (30.5%): $Y\;(mg\;kg^{-1}\;d^{-1})=955.69-147.12\;lnX\;(r^2=0.95)$, high DPL diet (35.5%): $Y\;(mg\;kg^{-1}\;d^{-1})=1362.41-209.79\;lnX\;(r^2=0.99)$. Where: X=body weight (g wet wt.). The TAN excretion rates ranged 28.5%-37.1% of the total nitrogen ingested for the low DPL diet (30.5%) and 37.4-38.5% for the high DPL diet (35.5%). Total nitrogen losses of fish fed the high DPL diet $(35.5%;\;0.26\sim0.91g\;kg^{-1}\;d^{-1})$ were higher than those fed the low DPL diet $(30.5%;\;0.22\sim0.68g\;kg^{-1}\;d^{-1})$. The losses decreased per kg of fish as fish size increased. Results will provide valuable information fer water quality management and culture of Nile tilapia in recirculating aquaculture systems.

Effects of Artificial Filaments Equipped in the Aeration Tank of Aerobic Fermentation System on the Removal Efficiency of Nitrogen of Swine Wastewater Containing High Nitrogen (담체설치가 고질소함유 양돈폐수의 호기발효에 미치는 영향)

  • 손경호;이상락;안정제;권윤정;정태영
    • Journal of Animal Environmental Science
    • /
    • v.6 no.2
    • /
    • pp.65-72
    • /
    • 2000
  • This study was conducted to investigate the effects of artificial filaments equipped in the aeration tank of aerobic·fermentation system on the removal efficiency of swine wastes which were fermented an aerobically and thus containing high nitrogen. Two aerobic fermentation system each consist4s of 4 tanks ; storage tank, 1st and 2nd aeration tank and settling tank were run before and one or three weeks after equipment of artificial filament in the aeration tanks. Total solids concentration tended to increase by aerobic fermentation in all running periods. However, decreased(P<0.05) total nitrogen concentration was shown three weeks after the equipment of artificial filament. Ammonia nitrogen concentration also largely decreased(p<0.05) in both running periods of one and three weeks after equipment of artificial filaments. These results suggest that the artificial filaments may improve the removal efficiency of nitrogen in swine wastewater containing high nitrogen during aerobic fermentation.

  • PDF