나일틸라피아의 암모니아 배설에 미치는 어체중과 사료 내 단백질 함량의 영향

Effects of Body Weight and Dietary Protein Level on Ammonia Excretion by the Nile tilapia Oreochromis niloticus

  • 오승용 (한국해양연구원 해양생물자원연구본부) ;
  • 조재윤 (부경대학교 양식학과)
  • Oh, Sung-Yong (Marine Living Resources Research Division, Korea Ocean Research & Development Institute) ;
  • Jo, Jae-Yoon (Department of Aquaculture, Pukyong National University)
  • 발행 : 2005.05.25

초록

암모니아는 양식 생산성을 제한하는 주요 인자로서 암모니아 배설의 정량화는 양식시스템 내 수질 관리를 위해 중요하다. 어류의 암모니아 배설은 체중과 사료내 단백질 함량에 영향을 받는 것으로 알려져 있으며, 본 실험에서는 나일틸라피아의 암모니아 배설에 미치는 체중과 사료 내 단백질 함량에 대한 영향을 조사하였다. 세가지 크기의 나일틸라피아, 초기 평균 무게가 4.8 g, 42.7 g, 그리고 176.8 g를 대상으로 두가지 단백질 함량(30.5%와 35.5%)의 사료를 각각 어체중의 6%, 3%,그리고 1.5%공급하였다. 각 실험어는 17.1 L수조에 3반복 수용하여 실험을 수행하였다. 사료 공급 후 최대 총암모니아성 질소(total ammonia nitrogen, TAN) 배설률은 $4{\sim}8$ 시간 사이에 나타났으며, 24시간 이내로 사료 공급 이전 농도로 회복되었다. TAN 배설률$(mg\;kg^{-1}\;h^{-1})$은 어류 무게가 증가할수록 감소하였으며, 사료 내 단백질 함량이 증가할수록 증가하였다(P<0.05). 단백질 함량이 다른 두 가지 사료를 공급했을 때 나일틸라피아의 어체중(X, 습중량)에 따른 일간 TAU 배설식$(Y\;mg\;kg^{-1}\;d^{-1})$은 다음과 같다. 저단백질(30.5%)실험구$(Y\;mg\;kg^{-1}\;d^{-1})=955.69-147.12\;lnX\;(r^2=0.95)$, 고단백질(35.5%) 실험구$(Y\;mg\;kg^{-1}\;d^{-1})=1362.41-209.79\;lnX\;(r^2=0.99)$. 섭취된 질소에 대한 TAN 배설 비율은 저단백질(30.5%) 및 고단백질(35.5%)실험 구에서 각각 $28.5{\sim}37.1%$$37.4{\sim}38.5%$으로 나타났으며, 이에 따른 총 질소 손실은 각각 $0.22{\sim}0.68g\;kg^{-1}\;d^{-1}$$0.26{\sim}0.91g\;kg^{-1}\;d^{-1}$으로 고단백질 실험구와 어체중이 감소할수록 높게 나타났다. 이와 같은 결과들은 순환여과식 나일틸라피아 양식장 내 수질 및 사육관리를 위한 중요한 자료가 될 것이다.

Ammonia is the major limiting factor in intensive aquaculture production systems. Therefore, quantification of ammonia excretion is important for the water quality management in aquaculture systems. Ammonia excretion is known to be affected by many factors such as body weight and dietary protein level (DPL). In this study, experiments were carried out to investigate the effects of body weight and DPLs on the rates of ammonia excretion of Nile tilapia Oreochromis niloticus. Three sizes of fishes (mean initial weight; 4.8 g,42.7 g and 176.8 g) were fed each of two dietary protein levels (30.5% and 35.5%). Daily feeding levels for the three fish sizes of 4.8 g, 42.7 g and 176.8 g were 6%, 3%, and 1.5% body weight per day, respectively. Each group of fish was stocked in a 17.1-L aquarium and all treatments were triplicated. Following feeding, the weight-specific ammonia excretion rate of O. niloticus increased, peaked at 4 to 8 h, and returned to pre-feeding levels within 24 h. Total ammonia nitrogen (TAN) excretion.ate per unit weight decreased with the increase of fish weight for each diet (P<0.05). The TAN excretion rate increased with increasing dietary protein content for each fish size (P<0.05). TAN excretion rates (Y) for each diet with different fish weights were described by the following equations: low DPL diet (30.5%): $Y\;(mg\;kg^{-1}\;d^{-1})=955.69-147.12\;lnX\;(r^2=0.95)$, high DPL diet (35.5%): $Y\;(mg\;kg^{-1}\;d^{-1})=1362.41-209.79\;lnX\;(r^2=0.99)$. Where: X=body weight (g wet wt.). The TAN excretion rates ranged 28.5%-37.1% of the total nitrogen ingested for the low DPL diet (30.5%) and 37.4-38.5% for the high DPL diet (35.5%). Total nitrogen losses of fish fed the high DPL diet $(35.5%;\;0.26\sim0.91g\;kg^{-1}\;d^{-1})$ were higher than those fed the low DPL diet $(30.5%;\;0.22\sim0.68g\;kg^{-1}\;d^{-1})$. The losses decreased per kg of fish as fish size increased. Results will provide valuable information fer water quality management and culture of Nile tilapia in recirculating aquaculture systems.

키워드

참고문헌

  1. AOAC., 1990. Official methods of analysis. 15th ed. Association of Official Analytical Chemists. Arlington, Virginia, USA. 1298 p
  2. APHA, 1992. Standard methods for the examination of water and wastewater, 18th Ed., EPS Group, pp. 122-124
  3. Ballestrazzi, R, D. Lanari, E. D'Agaro and A Mion, 1994. The effect of dietary protein level and source on growth, body composition, total ammonia and reactive phosphate excretion ofgrowing sea bass (Dicentrarchus labrax). Aquaculture, 127, 197-206 https://doi.org/10.1016/0044-8486(94)90426-X
  4. Beamish, F. W. H. and E. Thomas, 1984. Effects of dietary protein and lipid on nitrogen losses in rainbow trout, Salmo gairdneri. Aquaculture, 41, 359-371 https://doi.org/10.1016/0044-8486(84)90203-5
  5. Begum, N. N., S. C. Chakraborty and M. Zaher, 1994. Replacement of fishmeal by low-cost animal protein as a quality fish feed ingredient for Indian major carp Labeo rohita fingerlings. Sci. Food Agricult. 64, 191-197 https://doi.org/10.1002/jsfa.2740640207
  6. Brunty,J. L., R A Bucklin, J. Davis, C. D. Baird and R A Nordstedt, 1997. The influence of feed protein intake on tilapia ammonia production. Aquac. Eng., 16, 161-166 https://doi.org/10.1016/S0144-8609(96)01019-9
  7. Cai, Y. J. and R C. Summerfelt, 1992. Effects of temperature and size on oxygen consumption and ammonia excretion in walleye. Aquaculture, 104, 127-138 https://doi.org/10.1016/0044-8486(92)90143-9
  8. Cai, Y. J., J. Wermerskirchen and I. R Adelman, 1996. Ammonia excretion rate indicates dietary protein adequacy for fish. Prog. Fish-Cult., 58, 124-127
  9. Carter, C. G and A E. Brafield, 1992. The bioenergetics of grass carp, Ctenopharyngodon idella (Val.): the influence of body weight, ration and dietary composition on nitrogenous excretion. J. Fish Biol., 41, 533-543 https://doi.org/10.1111/j.1095-8649.1992.tb02681.x
  10. Chen, S., M. B. Timmons, D. J. Aneshnasley and J. J. Bisogni, Jr., 1993. Suspended solids characteristics from recirculating aquacultural systems and design implications. Aquaculture, 112, 143-155 https://doi.org/10.1016/0044-8486(93)90440-A
  11. Choi, S. M., S. H. Ko, G.J. Park, S. R Lim, G Y. Yu, J. H. Lee and S. C. Bai, 2004. Utilization of song-gang stone as the dietary additive in juvenile olive flounder, Paralichthys olivaceus. J. Aquacult, 17, 39-45
  12. Dosdat, A, F. Servais, R Metailler, C. Huelvan and E. Desbruyeres, 1996. Comparison of nitrogen losses in five teleost fish species. Aquaculture, 141, 107-127 https://doi.org/10.1016/0044-8486(95)01209-5
  13. Echevarria, G, N. Zarauz, J. Lopez-Ruiz and S. Zamora, 1993. Study of nitrogen excretion in the gilthead seabream (Sparus aurata L): Influence of nutritional state. Comp. Biochem.Physiol., 105A, 17-19
  14. Forsberg, J. A and R C. Summerfelt, 1992. Effects of temperature on dial ammonia excretion of fmgerling walleye. Aquaculture, 102, 115-126 https://doi.org/10.1016/0044-8486(92)90294-U
  15. Froese, R, 1988. Relationship of body weight and loading densities in fish transport using the plastic bag method. Aquacult.Fish. Manage., 19, 275-281
  16. Gershanovich, A D. and I. V. Pototskij, 1992. The peculiarities of nitrogen excretion in sturgeons (Acipenser ruthenus) (pisces, Acipenseridae): I. The influence of ration size. Comp. Biochern. Physio, 103A, 609-612
  17. Gowen, R J. and N. B. Bradbury, 1987. The ecological impact of salmonid farming in coastal waters: a review. Oceanogr. Mar. BioI. Annual Review, 25, 563-575
  18. Handy, R D. and M. Q Poxton, 1993. Nitrogen pollution in mariculture: toxicity and excretion of nitrogenous compounds by marine fish. Rev. Fish Fish. Biol., 3, 205-241 https://doi.org/10.1007/BF00043929
  19. Jobling, M., 1981. Some effects of temperature, feeding and body weight on nitrogenous excretion in young plaice Pleuronectes platessa L. J. Fish Biol., 18, 87-96 https://doi.org/10.1111/j.1095-8649.1981.tb03763.x
  20. Kaushik S. J., 1980. Influence of nutritional status on the daily patterns of nitrogen excretion in the carp (Cyprinus carpio L.) and the rainbow trout (Salmo gairdneri R). Reprod. Nutr. Dev., 20, 1751-1765 https://doi.org/10.1051/rnd:19801002
  21. Kaushik, S. J. and C. B. Cowey, 1991. Dietary factors affecting nitrogen excretion by fish. In: C. B. Cowey and C. Y. Cho (ed.). Nutritional Strategies & Aquaculture Waste, pp. 37-50
  22. Kaushik, S. J. and E. F. Gomes, 1988. Effect of frequency offeeding on nitrogen and energy balance in rainbow trout under maintenance conditions. Aquaculture, 73, 207-216 https://doi.org/10.1016/0044-8486(88)90055-5
  23. Kikuchi, K., 1995. Nitrogen excretion rate of Japanese floundera criterion for designing close circulating culture systems. Bamidgeh,47,112-118
  24. Leung, K. M. Y., J. C. W. Chu, and R. S. S. Wu, 1999. Effects of body weight, water temperature and ration size on ammonia excretion by the areolated grouper (Epinephelus areolatus) and mangrove snapper (Lutjanus argentimaculatus). Aquaculture, 170, 215-227 https://doi.org/10.1016/S0044-8486(98)00404-9
  25. Lovell, T., 1989. Nutrition and Feeding of Fish. Van Nostrand Reinhold, New York, 260 pp
  26. McGoogan, B. B. and D. M. III Gatlin, 1999. Dietary manipulations affecting growth and nitrogenous waste production ofred drum, Sciaenops ocellatus I. Effects of dietary protein and energy levels. Aquaculture, 333-348
  27. Oh, S. Y., C. H. Noh, K. P. Hong and J. M. Kim, 2004. Total ammonia nitrogen excretion rates and feces production rates as an index for comparing efficiency of dietary protein utilization of offsprings from selected Korean strain, cultured Japanese strain and their intraspecific hybrid strain of juvenile red sea bream, Pagrus major. Ocean Polar Res., 26, 415-423 https://doi.org/10.4217/OPR.2004.26.3.415
  28. Paulson, L. J., 1980. Models of ammonia excretion for brook trout (Salvelinus fortinalis) and rainbow trout (Salmo gairdneri). Can. J. Fish. Aquacult. Sci., 37, 1421-1425 https://doi.org/10.1139/f80-181
  29. Porter, C. B, M. D. Krom, M. Q Robbins, L. Brickell and A Davidson, 1987. Ammonia excretion and total N budget for gilthead seabream (Sparus aurata) and its effect on water quality conditions. Aquaculture, 66, 287-297 https://doi.org/10.1016/0044-8486(87)90114-1
  30. Pillay, T. V. R, 1992. Aquaculture and the Environment. Fishing News Books, Oxford, pp. 56-189
  31. Rychly,J., 1980. Nitrogen balance in trout. II. Nitrogen excretion and retention after feeding with varying protein and carbohydrate levels. Aquaculture, 20, 343-350 https://doi.org/10.1016/0044-8486(80)90095-2
  32. Shiau, S. and D. Cheng, 1999. Ammonia excretion and oxygen consumption of tilapia are affected by different carbohydrate ingestion. Fish. Sci., 65, 321-322 https://doi.org/10.2331/fishsci.65.321
  33. Skjoldal, H. R and I. Dundas, 1989. The Chrysochromulina polylepis bloom in the Skagerrak and Kattegat in May-June 1988: environmental conditions, possible causes, and effects. ICES Coop. Res. Rep., No. 175, 59 pp
  34. Spyridakis, P, R. Metailler, J. Gabaudan and A. Riaza, 1989. Studies on nutrient digestibility in European sea bass (Dicentratchus labrax). I. Methodological aspects concerning faeces collection. Aquaculture, 77, 61-70 https://doi.org/10.1016/0044-8486(89)90021-5
  35. Sumagaysay, N. S., 2003. Nitrogen and phosphorus digestibility and excretion of different-sized groups of milkfish (Chanos chanos Forsskal) fed formulated and natural food-based diets. Aquat. Res., 2003, 407-418
  36. Wu, R. S. S., 1995. The environmental impact of marine fish culture: towards a sustainable future. Mar. Poll. Bull., 31, 159-166 https://doi.org/10.1016/0025-326X(95)00100-2
  37. Yager, T. K. and R. C. Summerfelt, 1993. Effects offish size and feeding frequency on metabolism ofjuvenile walleye. Aquae.Eng., 12, 19-36 https://doi.org/10.1016/0144-8609(93)90024-6