• Title/Summary/Keyword: ammonia concentration

Search Result 1,145, Processing Time 0.032 seconds

Effects of Biologically Active Materials Prepared for Several Minerals and Plants on the Growth of Rumen Microbes (무기물성 및 식물성 생리활성 물질이 반추위 미생물의 성장에 미치는 영향)

  • Shin, Sung-Whan;Lee, Shin-Ja;Ok, Ji-Un;Lee, Sang-Min;Lim, Jung-Hwa;Kim, Kyoung-Hoon;Moon, Yea-Hwang;Lee, Sung-Sill
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1555-1561
    • /
    • 2007
  • In order to know the effects of scoria, germanium, charcoal, ginger, stevia, and CLA(Conjugated Linoleic Acid) as biologically active materials on pathogenic microbes and rumen anaerobic microbes, the growth rate of pathogens (including Escherichia coli O157, Salmonella paratyphi, Listeria monocytogenes and Staphylococcus aureus) and in vitro lumen microbial growth, gas production, ammonia concentration, carboxymethyl-cellulase (CMCase) activity, and microbial populations were investigated. The growth of pathogenic microbes was inhibited by the supplement of 0.10% ginger. Ginger had powerful antimicrobial properties on all the pathogens used in this experiments. Additionally in the antibacterial assay by paper disc method, we could observe the clear zone of similar area with the positive control(antibiotics) for E. coli as applied with the 10% stevia or the 10% CLA only. The supplements of ginger, stevia and CLA in vitro rumen fermentation inhibited populations of rumen bacteria and protozoa. Particularly supplement of ginger resulted in remarkable reduction of the protozoa population, which means it might serve as a source inhibiting material of methane creation in the rumen.

Effect of Herbal Extracts Supplementation on Ruminal Methane Production and Fermentation Characteristics In vitro (한약재 추출물 첨가가 in vitro 반추위 발효 시 메탄생성 및 발효성상에 미치는 영향)

  • Lee, Shin-Ja;Lee, Sung-Sill;Moon, Yea-Hwang
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1315-1322
    • /
    • 2011
  • This study was conducted to investigate the effects of several herbal extracts (obtusifolia, cinnamon, chinese pepper, licorice root) on the characteristics of rumen fermentation in vitro. Soybean meal was used as a substrate for fermentation in vitro. Herbal extracts were supplemented to media by 10% of the substrate. The substrates supplemented to Dehority artificial media with herbal extracts were fermented in 30ml serum bottles for 0, 3, 6, 9, 12 and 24 hr at $39^{\circ}C$. Cumulative gas production was significantly (p<0.05) greater in the herbal extract supplements than in the control, in the order of licorice root, chinese pepper, cinnamon and obtusifolia. Methane proportions of the herbal extracts were significantly (p<0.05) higher than that of the control. Licorice root extract supplementation resulted in the lowest methane proportion at 3 hr fermentation. Proportion of hydrogen was significantly (p<0.05) higher in the herbal extract supplements than in the control at 12 hr fermentation. Compared to the control, ammonia concentration in the licorice root was significantly higher at 3 hr fermentation, but lower at 12 hr fermentation (p<0.05). Based on these results, supplementation of the herbal extracts used in this experiment resulted in increased cumulative gas production and stimulating methane production in vitro rumen fermentation.

Interspecies Transfer and Regulation of Pseudomonas stutzeri A1501 Nitrogen Fixation Island in Escherichia coli

  • Han, Yunlei;Lu, Na;Chen, Qinghua;Zhan, Yuhua;Liu, Wei Liu;Lu, Wei;Zhu, Baoli;Lin, Min;Yang, Zhirong;Yan, Yongliang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1339-1348
    • /
    • 2015
  • Until now, considerable effort has been made to engineer novel nitrogen-fixing organisms through the transfer of nif genes from various diazotrophs to non-nitrogen fixers; however, regulatory coupling of the heterologous nif genes with the regulatory system of the new host is still not well understood. In this work, a 49 kb nitrogen fixation island from P. stutzeri A1501 was transferred into E. coli using a novel and efficient transformation strategy, and a series of recombinant nitrogen-fixing E. coli strains were obtained. We found that the nitrogenase activity of the recombinant E. coli strain EN-01, similar to the parent strain P. stutzeri A1501, was dependent on external ammonia concentration, oxygen tension, and temperature. We further found that there existed a regulatory coupling between the E. coli general nitrogen regulatory system and the heterologous P. stutzeri nif island in the recombinant E. coli strain. We also provided evidence that the E. coli general nitrogen regulator GlnG protein was involved in the activation of the nif-specific regulator NifA via a direct interaction with the NifA promoter. To the best of our knowledge, this work plays a groundbreaking role in increasing understanding of the regulatory coupling of the heterologous nitrogen fixation system with the regulatory system of the recipient host. Furthermore, it will shed light on the structure and functional integrity of the nif island and will be useful for the construction of novel and more robust nitrogen-fixing organisms through biosynthetic engineering.

Effects of Dietary Supplementation of Fermented Microbial Complex (Eco-Farm$^{(R)/}$) on Performance of Finishing Pigs and Air Quality in Finishing Building (복합미생물 발효제(Eco-Farm$^{(R)}$ ) 급여가 비육돈 생산성과 돈사 환경개선에 미치는 영향)

  • 김두환;정치섭
    • Journal of Animal Environmental Science
    • /
    • v.9 no.1
    • /
    • pp.27-34
    • /
    • 2003
  • This experiment was carried out to investigate the effect of dietary supplementation of fermented microbial complex(Eco-Farm$^{(R)}$) on performance of finishing pigs and indoor air quality in finishing building. A total 135 crossbred [(Landrace ${\times}$ Yorkshire) ${\times}$ Duroc] pigs were randomly arranged into nine groups and assigned to three treatments. Pigs were fed a basal diet supplemented with 0, 0.5 and 1% level of fermented microbial complex(Eco-Farm$^{(R)}$) until the market weight for 40 days of the experimental period. Average daily feed intake and feed conversion ratio were significantly improved (p<0.05) with dietary supplementation of 0.5% fermented microbial complex (Eco-Farm$^{(R)}$): however, average daily gain was not affected by dietary supplementation of fermented microbial complex(Eco-Farm$^{(R)}$). Indoor ammonia and hydrogen sulfide concentrations in the finishing building were significantly(p<0.05) decreased by dietary supplementation of fermented microbial complex(Eco-Farm$^{(R)}$) compared with those of control, however, indoor carbon dioxide concentration was not affected by dietary supplementation of fermented microbial complex(Eco-Farm$^{(R)}$). In conclusion, the results obtained from this experiment suggest that the dietary supplementation of fermented microbial complex(Eco-Farm$^{(R)}$) for finishing pigs improved performance and indoor air quality in the finishing building.hing building.

  • PDF

Survey on Housing Facilities and Management of Broiler Welfare Certified Farms (국내 동물복지 인증 육계농가의 사육시설 및 사육현황)

  • Cheon, Si Nae;Yoo, Geum Zoo;Jung, Ji Yeon;Kim, Chan Ho;Kim, Dong-Hoon;Jeon, Jung Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.2
    • /
    • pp.209-221
    • /
    • 2021
  • The purpose of this study is to obtain basic data on housing facilities and management of broiler welfare certified farms in Korea. We investigated breeds, flock sizes, stocking density, perches, litter, plumage condition, and other diseases. In addition, we measured temperature, relative humidity, light intensity, ammonia, and carbon dioxide concentration in the barn. As result, criteria were met in all cases that we investigated. However, farmers commonly demanded relaxation of perch and litter. Perch usage of broiler was impractical due to low usage of it. Also, litter was increased, resulting in farmers' economic burden by the imbalance between supply and demand. This situation makes farmers reuse the litter. Unfortunately, there are no clear certification standards. During re-inspection, the animal welfare certification of farms was canceled due to the reuse of litter. It is difficult to modify the standard of perch due to the strong declarative meaning of animal welfare rather than the necessity of perch usage, however, the reuse of litter should be improved. It is important to think and solve any problems faced by all farms. Especially, animal welfare standards need to be improved in more clarity and rationality.

Changes in Sediment Properties Caused by a Covering of Oyster Shells Pyrolyzed at a Low Temperature (저온 소성 굴 패각의 피복에 의한 연안 오염 퇴적물의 성상 변화에 관한 연구)

  • Kim, Hyung-Chul;Woo, Hee-Eun;Jeong, Ilwon;Oh, Seok-Jin;Lee, Seong-Ho;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.74-80
    • /
    • 2019
  • In this study, pyrolyzed oyster shells at a low temperature ($350^{\circ}C$) were applied for a mesocosm experiment to confirm resulting changes in the properties of sediment. After creating a covering of oyster shells, an increase in ORP and decrease in ammonia in the overlying water was observed in an experimental case. The decrease of TOC in this experiment was due to the dilution of organic matter due to the addition of inorganic matter (pyrolyzed oyster shells). The decrease in the concentration of AVS was observed due to the adsorption of AVS by the surface of the oyster shells. From the results obtained in this experiment, it has been concluded that pyrolyzed oyster shells at a low temperature can be used for remediation of polluted sediment.

Antibacterial activity of lactic acid bacteria against biogenic amine-producing Bacillus spp. isolated from traditional fermented soybean paste (전통 발효 된장으로부터 분리된 바이오제닉 아민 생성 바실러스균에 대한 유산균의 항균 활성)

  • Lim, Eun-Seo
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.398-409
    • /
    • 2018
  • In the present study, biogenic amine-forming Bacillus spp. and bacteriocin-producing lactic acid bacteria (LAB) isolated from Doenjang were generally identified through 16S rRNA gene sequencing, and the physicochemical and microbiological characteristics of cheonggukjang prepared using the isolated strains were investigated. Biogenic amine-producing bacteria from the samples were identified as Bacillus licheniformis DB102, B. subtilis DB203, B. stearothermophilus DB206, B. pumilus DB209, B. subtilis DB310, B. coagulans DB311, B. cereus DB313, B. amyloliquefaciens DB714, B. amylolique-faciens DB915, B. licheniformis DB917, B. cereus DB1019, B. subtilis DB1020, B. megaterium DB1022. The bacteriocin-producing LAB showed antibacterial effect against biogenic amine-producing Bacillus spp. were identified as Lactobacillus plantarum DLA205, L. brevis DLA501, L. fermentum DLA509, L. acidophilus DLA703, and Enterococcus faecalis DLA804. The bacteriocin produced by the LAB significantly decreased the viable numbers and the amine production ability of the biogenic amine-forming Bacillus spp. in a concentration dependent manner. Therefore, the pH, ammonia nitrogen and biogenic amine content of cheonggukjang prepared by mixed culture of the LAB and Bacillus spp. were significantly decreased compared to the control group.

Evaluation of liquid and powdered forms of polyclonal antibody preparation against Streptococcus bovis and Fusobacterium necrophorum in cattle adapted or not adapted to highly fermentable carbohydrate diets

  • Cassiano, Eduardo Cuellar Orlandi;Perna, Flavio Junior;Barros, Tarley Araujo;Marino, Carolina Tobias;Pacheco, Rodrigo Dias Lauritano;Ferreira, Fernanda Altieri;Millen, Danilo Domingues;Martins, Mauricio Furlan;Pugine, Silvana Marina Piccoli;de Melo, Mariza Pires;Beauchemin, Karen Ann;Meyer, Paula Marques;Arrigoni, Mario de Beni;Rodrigues, Paulo Henrique Mazza
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.74-84
    • /
    • 2021
  • Objective: Feed additives that modify rumen fermentation can be used to prevent metabolic disturbances such as acidosis and optimize beef cattle production. The study evaluated the effects of liquid and powdered forms of polyclonal antibody preparation (PAP) against Streptococcus bovis and Fusobacterium necrophorum on rumen fermentation parameters in ruminally cannulated non-lactating dairy cows that were adapted or unadapted to a high concentrate diet. Methods: A double 3×3 Latin square design was used with three PAP treatments (control, powdered, and liquid PAP) and two adaptation protocols (adapted, unadapted; applied to the square). Adapted animals were transitioned for 2 weeks from an all-forage to an 80% concentrate diet, while unadapted animals were switched abruptly. Results: Interactions between sampling time and adaptation were observed; 12 h after feeding, the adapted group had lower ruminal pH and greater total short chain fatty acid concentrations than the unadapted group, while the opposite was observed after 24 h. Acetate:propionate ratio, molar proportion of butyrate and ammonia nitrogen concentration were generally greater in adapted than unadapted cattle up to 36 h after feeding. Adaptation promoted 3.5 times the number of Entodinium protozoa but copy numbers of Streptococcus bovis and Fibrobacter succinogens genes in rumen fluid were not affected. However, neither liquid nor powdered forms of PAP altered rumen acidosis variables in adapted or unadapted animals. Conclusion: Adaptation of cattle to highly fermentable carbohydrate diets promoted a more stable ruminal environment, but PAP was not effective in this study in which no animal experienced acute or sub-acute rumen acidosis.

Rumen fermentation, methane production, and microbial composition following in vitro evaluation of red ginseng byproduct as a protein source

  • Hamid, Muhammad Mahboob Ali;Moon, Joonbeom;Yoo, Daekyum;Kim, Hanbeen;Lee, Yoo Kyung;Song, Jaeyong;Seo, Jakyeom
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.801-811
    • /
    • 2020
  • The main objective of this in vitro study was to evaluate red ginseng byproduct (RGP) as a protein resource and its effects on rumen fermentation characteristics, microflora, CO2, and CH4 production in ruminants. Four treatments for in vitro fermentation using buffered rumen fluid over a 48 h incubation period were used: 1, RGP; 2, corn gluten feed (CGF); 3, wheat gluten (WG); and 4, corn germ meal. In vitro dry matter digestibility (IVDMD), in vitro neutral detergent fiber digestibility (IVNDFD), in vitro crude protein digestibility (IVCPD), volatile fatty acids, pH, and ammonia nitrogen (NH3-N) were estimated after 48 h incubation. Gas production was investigated after 3, 6, 12, 24, 36 and 48 h. The CO2 and CH4 were evaluated after 12, 24, 36, and 48 h. A significant difference in total gas production and CO2 emissions was observed (p < 0.01) at all incubation times. CH4 production in RGP were higher (p < 0.05) than that in other treatments but a higher CH4 portion in the total gas production was observed in WG (p < 0.05) at 48 h incubation. The IVDMD, IVNDFD, and IVCPD of RGP was lower than those of other conventional ingredients (p < 0.01). The RGP had the lowest NH3-N value among the treatments (p < 0.01). The RGP also had the lowest total VFA concentration (p < 0.01), but presented the highest acetate proportion and acetate to propionate ratio among the treatments (both, p < 0.01). The abundance of Prevotella ruminicola was higher in RGP than in WG (p < 0.01), whereas RGP has lower methanogenic archaea (p < 0.01). In conclusion, based on the nutritive value, IVDMD, low NH3-N, and decreased methanogenic archaea, RGP inclusion as a protein source in ruminant diets can be an option in replacing conventional feed sources.

A study on breakthrough characteristics of ion exchange bed with H- and ETAH-form resins for cation exchange in NH3 and ETA solution including trace NaCl (미량의 NaCl을 포함하는 NH3 및 ETA 용액에서 H 및 ETAH 형 수지에 대한 이온교환 파과 특성 연구)

  • Ahn, Hyun-Kyoung;Kim, Youn-Su;Park, Byung-Gi;Rhee, In-Hyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.533-544
    • /
    • 2021
  • Ion exchange (IX) performance on the exchanger bed is essentially evaluated for the generation of ultrapure water in electronics and chemical industries and for the corrosion control in nuclear power plants. The breakthrough characteristics of IX bed with multi-component were investigated with both cation- and mixed-IX beds of H- and ETAH-form for four kinds of cation exchange resins by using the combined solution of ethanolamine (ETA) and ammonia (NH3) at trace NaCl. Unlike major components (ETAH+ and NH4+ ), the phenomena of breakthrough and overshooting at bed outlet were not observed by Na+ over the test period (> 3 times theoretical exchange capacity of IX bed). The breakthrough from H-form resin bed was sequentially reached by ETAH+ and NH4+, while the overshooting was observed for ETAH+ at the breakthrough of NH4+. NH4+ was 51.5% higher than ETAH+ in terms of the relative selectivity determined with the width of breakthrough zone. At the increased concentration of Na+ at bed inlet, the selectivity and the overshooting were decreased and increased, respectively. Na+ leakage was higher from ETAH-form resin bed and was not identical for four kinds of cation-exchange resins, which may be reduced by improving the intrinsic property of IX resin.