• 제목/요약/키워드: ammonia

검색결과 3,486건 처리시간 0.03초

서식환경요인에 따른 피조개육의 Carotenoid색소와 지질성분의 변화 (Variation in Cartenoid Pigment and lipids of the Arkshell, (Anadara broughtonii) according to the Environmental Factors of the Growing Area)

  • 하봉석;강동수;김용관;김귀식
    • 한국식품영양과학회지
    • /
    • 제18권1호
    • /
    • pp.71-92
    • /
    • 1989
  • 피조개 양식장의 수질변화와 양성중의 피조개 근육의 carotenoid조성 그리고 지질조성의 변화 등을 비교, 검토하여 다음과 같은 결과를 얻었다. 해수의 일반정상중, pH, 염분도, 전기전도도는 충무, 여수의 양수역이 비슷하였으나, 년평균 수온은 충무수역이 약$2^{\circ}C$정도 높았다. 여수수역은 충무수역보다, 아질산성질소, 암모니아성질소, 인산성인등의 농도가 다소높았고, 특히 규산성규소의 농도가 2배 정도가 높아 수질이 뒤떨어지는 것으로 판단된다. 대장균군과 분변계대장균의 변화범위는 충무 수역이 $3.6{\sim}93/100ml,\;3.0{\sim}15/100ml$이며, 여수수역이 $7.3{\sim}150/100ml,\;3.6{\sim}20/100ml$로서 여수수역이 약간 불결하였다. 대장균의 조성은 Escherichia coli군이 8.9%, Citrobacter freundii군이 33.9%, Enterobacter aerogenes 군이 41.1%, 동정되지 않은 것이 16.1%로 나타났다. 피조개육의 Hb함량변화는, 충무산이 $1.1{\sim}2.5g/dl$, 여수산이 $1.7{\sim}4.4g/dl$로서, 년평균함량이 충무산보다 여수산이 높았다. 그러나, 총 carotnoid의 함량변화는, 충무산이 $0.80{\sim}1.28mg/100g$ (muscle), 여수산이 $0.45{\sim}0.99mg/100g$ (muscle)로서, 년평균함량이 충무산이 여수산보다 높았다. 피조개육의 구성 carotenoids중에서, pectenolone (기하함량비율 : 충무산 63.0%, 여수산 59.0%), ${\beta}-carotene$(평균함량비율 : 충무산 6.5%, 여수산 18.9%), pectenoxanthin(평균함량비율 : 충무산 9.9%, 여수산 9.1%) 그리고 diatoxanthin monoester(평균함량비율 : 충무산 11.2 %, 여수산 5.2%)등의 함량이 높게 나타났고, 특히 pectenolone 은 산란기 이전까지는 계속 증가하다가 산란기 이후 감소하며, diatoxantin monester 는 성장기중 계속 증가하며, ${\beta}-carotene$은 산란기 이전까지 감소하다가 산란기 이후에는 계속 증가하여, 피조개육색에 적접 영향을 주는 것으로 판단된다. 총지질, 중성지질 및 극성지질등의 각 지질을 구성하는 주요지방산은 양적으로, $C_{16:0},\;C_{18:1},\;C_{22:6},\;C_{20:2},\;C_{18:20},\;C_{20:5}$ 그리고 $C_{18:3}$산의 순이었다. 충무산과 여수산 피조개육의 총지질중에서, 중성지질의 함량은 극성지질의 함량보다 2배량 많았으며, 총지질과 중성지질 함량은 산란기중 에 감소하였다. 그리고 계절별 지질의 지방산조성의 변화에서도, 산란기중에는, 총지질과 중성지질의 polyene 산은 감소하고 포화산은 증가하며, 반대로 당지질과 인지질의 polyene산은 증가하고 포화산은 감소하는 양상을 보여 대조적이었다. 총지질의 sterol조성은 충무산과 여수산에서 다같이, cholesterol, campesterol, brassicasterol 및 ${\beta}-sitosterol$의 순으로 함유하며, 산란기 중에 cholesterol의 함량비율은 감소되고 campesterol 은 성장기중 3월에서 11월까지 증가하는 경향을 보였다.

  • PDF

청국장(淸國醬) 발효중(醱酵中) 질소화합물(窒素化合物)의 변화(變化) (Changes in Nitrogenous Compounds of Soybean during Chungkookjang Koji Fermentation)

  • 성낙주;지영애;정승용
    • 한국식품영양과학회지
    • /
    • 제13권3호
    • /
    • pp.275-284
    • /
    • 1984
  • 우리나라 고유(固有)의 발효식품(醱酵食品)인 청국장(淸國醬)은 발효중(醱酵中) 납두균(納豆菌)이 생산(生産)하는 발효작용(醱酵作用)으로 대두중(大豆中)의 단백질(蛋白質)이 peptide와 아미노산(酸)으로 분해(分解)되어 독특(獨特)한 향미(香味)를 생성(生成)하고 동시(同時)에 소화율(消化率)을 높이며 또 제조기간(製造期間)이 짧다는 장점도 가지고 있다. 그러나 청국장(淸國醬)메주 발효중(醱酵中) 질소화합물(窒素化合物), 핵산관련물질(核酸關聯物質) 및 지방산(脂肪酸)등의 변화(變化)를 종합적(綜合的)으로 실험(實驗)한 보고(報告)는 이외로 적다. 그래서 일본산(日本産) Natto로 부터 분리(分離)한 Bacillus natto 균(菌)으로 부터 청국장(淸國醬)메주를 발효(醱酵)시키면서 경시적(經時的)으로 채취(採取)한 시료(試料)에 대(對)하여 질소화합물(窒素化合物), 유리(遊離)아미노산(酸), 구성(構成)아미노산(酸), 핵산관련물질(核酸關聯物質) 및 지방산(脂肪酸) 등의 변화(變化)를 실험(實驗)하여 다음과 같은 결과(結果)를 얻었다. 1. 청국장(淸國醬)메주 발효중(醱酵中) 불용성질소(不溶性窒素)는 발효중(醱酵中) 감소(減少)하였고, PAA 질소(窒素)는 완만한 증가(增加)를 보였다. 그리고 수용성질소(水溶性窒素)는 발효(醱酵) 36시간(時間)까지 일정(一定)한 수준을 유지한다가 그 후(後) 서서(徐徐)히 감소(減少)하는 경향(傾向)이었다. 엑스분질소(分窒素) 및 유리(遊離)아미노산질소(酸窒素)는 발효(醱酵) 48시간(時間)까지 급격(急激)히 증가(增加)하다가 그 이후(以後) 감소(減少)하였으나 암모니아질소(窒素)는 발효중(醱酵中) 계속해서 증가(增加)하였다. 2. 핵산관련물질(核酸關聯物質)은 원료대두(原料大豆)에는 ADP, ATP, AMP 및 inosine의 순(順)으로 그 함량(含量)이 많았고, 발효(醱酵) 48시간후(時間後)에는 inosine 및 hypoxanthine이 증가(增加)하는 반면(反面)에 ADP, ATP 및 AMP는 감소(減少)하였다. 3. 원료대두중(原料大豆中)의 유리(遊離)아미노산(酸)은 17종(種)이 검출(檢出) 동정(同定)되었으며, 함량(含量)이 많은 것은 cystine, arginine, aspartic acid 및 phenylalanine의 순(順)이었고, 총유리(總遊離)아미노산(酸)에 대(對)하여 3% 이하(以下)로 비교적(比較的) 함량(含量)이 적은 것은 methionine, lysine, alanine, glycine, leucine 및 tyrosine였고, threonine 및 proline은 흔적량이었다. 발효중(醱酵中) 계속해서 증가(增加)하는 유리(遊離)아미노산(酸)은 alanine, valine, isoleucine, leucine 및 phenylalanine, 발효(醱酵) 48시간(時間)까지 증가(增加)하다가 그 후(後) 감소(減少)하는 것은 lysine, histidine, arginine, glutamic acid, glycine, methionine 및 tyrosine였고, 그 외(外) 유리(遊離)아미노산(酸)은 증감(增減)이 불규칙(不規則)하였다. 4. 원료대두중(原料大豆中) 특(特)히 함량(含量)이 높은 구성(構成)아미노산(酸)은 glutamic acid, serine 및 proline으로서 이들 3종(種)이 총구성(總構成)아미노산(酸)의 42.7%였고, 함량(含量)이 적은 것은 methionine, cystine, histidine, tyrosine 및 isoleucine였다. 발효(醱酵) 12시간(時間)까지 증가(增加)하다가 그 후(後) 감소(減少)하는 구성(構成)아미노산(酸)은 lysine, histidine, glutamic acid, valine, isoleucine 및 phenylalanine, 발효중(醱酵中) 계속해서 감소(減少)하는 아미노산(酸)은 aspartic acid, proline, glycine, alanine, cystine, leucine 및 tyrosine, 발효(醱酵) 48시간(時間)까지 증가(增加)하다가 그 후(後) 감소(減少)하는 것은 arginine 및 methionine, 증감(增減)이 불규칙(不規則)한 것은 threonine 및 serine였다. 5. 원료대두(原料大豆)의 지방산(脂肪酸)은 8종(種)이였고, $C_{18:2}$ 산(酸)이 52.6%로 가장 많았다. 발효중(醱酵中) $C_{14:0}$ 산(酸) 및 $C_{16:2}$ 산(酸)은 양적(量的) 변화(變化)가 없었고, $C_{20:1}$ 산(酸)은 발효(醱酵) 24시간(時間)까지 증가(增加)하다가 그 후(後) 감소(減少)하였고, 그외(外) $C_{18:0}$ 산(酸), $C_{18:1}$ 산(酸), $C_{18:3}$ 산(酸)은 발효중(醱酵中) 불규칙(不規則)한 변화(變化)를 보였다.

  • PDF

${\beta}-Tyrosinase$에 관한 연구 -제2보 ${\beta}-Tyrosinase$에 의한 Halogen화(化) Tyrosine의 합성(合成)- (Studies on the ${\beta}-Tyrosinase$ -Part 2. On the Synthesis of Halo-tyrosine by ${\beta}-Tyrosinase$-)

  • 김찬조;장택투;곡길수;산전수명
    • Applied Biological Chemistry
    • /
    • 제22권4호
    • /
    • pp.198-209
    • /
    • 1979
  • Esherichia intermedia A-21의 균체(菌體)에서 얻은 ${\beta}-tyrosinase$${\alpha},{\beta}$-탈리작용(脫離作用)의 역(逆)반응을 이용하여 L-tyrosine, 2-chloro-L-tyrosine, 2-bromo-L-tyrosine 및 2-iodo-L-tyrosine을 효소합성하고 그들의 원소분석(元素分析)과 NMR-spectrum, Mass-spectrum 및 IR-spectrum을 측정하여 그 구조해석(構造解析)을 하였다. 또한 ${\beta}-tyrosinase$에 의한 각(各) halogen화(化) tyrosine의 합성속도와 분해속도 그리고 halogen화(化) phenol의 ${\beta}-tyrosinase$에 대한 저해작용(阻害作用) 및 2-bromotyrosine의 합성에서 m-bromophenol의 경시적(經時的) 첨가효과 등을 검토하여 다음과 같은 결과를 얻었다. 1) ${\beta}-tyrosinase$를 이용하여 pyruvin산(酸), $NH_3$ 그리고 m-chlorophenol, m-bromophenol 및 m-iodophenol 등을 기질로 한 각(各) halogen화(化) tyrosine의 효소합성에서 m-chlorophenol에서 2-chloro-tyrosine은 약 15%, m-bromophenol에서 2-bromotyrosine은 약 13.8% 그리고 m-iodophenol에서 2-iodotyrosine은 약 9.8%의 회수율(回收率)로 각각 얻어졌었다. 2) ${\beta}-tyrosinase$에 의한 tyrosine 및 halogen화(化) tyrosine의 합성에서 tyrosine의 합성속도를 100으로 하였을 때 2-chlorotyrosine은 28.2, 2-bromotyrosine은 8.13 그리고 2-iodotyrosine은 0.98의 상대속도를 보여 halogen화(化) tyrosine의 합성속도가 느렸다. 특히 Cl, Br, I의 순(順)으로 원자반경(原子半經)이 증가(增加)함에 따라서 halogen화(化) tyrosine의 합성속도가 저하(低下)되는 것이 인정(認定)되었다. 한편 3-iodotyrosine은 합성이 되지 않았다. 3) ${\beta}-tyrosinase$에 의한 tyrosine의 분해속도를 100으로 하였을 때 2-chlorotyrosine은 70.7, 2-bromotyrosine은 39.0, 2-iodotyrosine은 12.6의 상대적인 분해속도를 보였다. 즉 Cl, Br, I의 순(順)으로 원자반경(原子半經)이 크고 전기음성도(電氣陰性度)가 적어짐에 따라서 분해속도가 저하(低下)되는 것이 분명(分明)하였다 그리고 역시 3-iodotyrosine은 분해를 받지 않았다. 4) ${\beta}-tyrosinase$의 활성(活性)에 대하여 phenol은 현저한 조해작용(阻害作用)을 보였으며 o- 및 m-chlorophenol와 o-bromophenol의 조해(阻害)도 현저하였다. 반면 iodophenol의 조해(阻害)는 근소(僅少)하였으며 이들의 조해작용(阻害作用)을 Lineweaver-Burk plot법에 따라 측정한 결과 m-chlorophenol은 혼합형(混合型)의 조해작용(阻害作用)을 보였으며 그 Ki값은 $5.46{\times}10^{-4}M$이였다. 5) ${\beta}-tyrosinase$에 의한 2-bromotyrosine의 합성에서 기질인 m-bromophenol은 경시적(經時的)으로 소량(少量)씩 첨가하는 것이 효과적이었다. 6) ${\beta}-tyrosinase$를 이용하여 pyruvin산(酸), $NH_3$ 및 각(各) halogen화(化) phenol에서 합성한 2-halogen화(化) tyrosine들을 각각(各各) 원소분석(元素分析)하고 또한 NMR-spectrum, Mass-spectrum 그리고 IR-spectrum 등으로 측정하여 그들의 구조(構造)를 해석(解析)한 결과 각각(各各) 2-chloro-L-tyrosine, 2-bromo-L-tyrosine 및 2-iodo-L-tyrosine 임을 인정(認定)할 수 있었다.

  • PDF

플라즈마 보조 유기금속 화학기상 증착법에 의한 MCN(M=Ti, Hf) 코팅막의 저온성장과 그들의 특성연구 (Low Temperature Growth of MCN(M=Ti, Hf) Coating Layers by Plasma Enhanced MOCVD and Study on Their Characteristics)

  • 부진효;허철호;조용기;윤주선;한전건
    • 한국진공학회지
    • /
    • 제15권6호
    • /
    • pp.563-575
    • /
    • 2006
  • Ti(C,N) 박막을 온도범위 $200-300^{\circ}C$에서 tetrakis diethylamido titanium유기금속 화합물을 전구체로 이용하여 pulsed DC 플라즈마 보조 유기금속 화학기상 증착법 (PEMOCVD)으로 합성하였다. 본 연구에서는 플라즈마 특성을 서로 비교하기 위하여 수소$(N_2)$와 헬륨/수소$(He/H_2)$ 혼합기체를 각각 운반기체로 사용하였으며 전구체 이외에 질소$(N_2)$와 암모니아$(NH_3)$ 기체를 반응기체로 사용하여 서로 다른 플라즈마 화학조건에서 얻어지는 박막내의 탄소함유량(C Content)의 변화를 비교하여 탄소가 가장 적게 함유된 저온 코팅막 합성공정을 찾으려고 하였다. 이를 위하여 증착시 서로 다른 pulsed bias 전압과 기체종류 하에서 여기된 플라즈마 상태의 라디칼종들과 이온화 경향을 in-situ optical emission spectroscopy(OES)법으로 플라즈마 진단분석을 실시하였다. 그 결과 $(He/H_2)$ 혼합기체를 $N_2$와 함께 사용할 경우 라디칼 종들의 이온화를 매우 효과적으로 향상시킴을 관찰하였다. 아울러 $NH_3$ 기체를 $H_2$ 또는 $He/H_2$ 혼합기체와 같이 사용할 경우는 CN 라디칼의 생성을 억제하여 결과적으로 Ti(C, N) 박막내의 탄소함량을 크게 낮춤을 알 수 있었고, CN 라디칼의 농도가 탄소 함유량과 많은 관련이 있음을 알았다. 이 결과는 바로 박막의 미세경도와도 연관이 되며, bias전압과 기체종류에 크게 의존하여 Ti(C, N) 박막의 미세경도가 1250 - 1760 Hk0.01 사이에서 나타났고, 최대치$(1760\;Hk_{0.01})$는 600 V bias 전압과 $H_2$$N_2$ 기체를 사용한 경우에 얻어졌다. HF(C, N) 박막 역시 tetrakis diethylamido hafnium 전구체와 $N_2/He-H_2$ 혼합기체를 이용하여 pulsed DC PEMOCVD 법으로 기판온도 $300^{\circ}C$ 이하, 공정압력 1 Torr, 그리고 bias전압과 기체 혼합비를 변화시키면서 증착하였다. 증착시 in-situ OES 분석결과 플라즈마 내의 질소종의 함유량 변화에 따라 증착속도가 크게 변화됨을 알 수 있었고, 많은 질소기체를 인입하면 질소종이 많아지지만 증착률은 급격히 감소하였고 박막내 탄소의 함량이 커지면서 막질이 비정질로 바뀌고 미세경도 또한 감소함을 알 수 있었다. 이는 in-situ 플라즈마 진단분석이 전체 PEMOCVD 공정에 있어서 대단히 중요하고, Ti(C,N)과 Hf(C,N) 코팅막의 탄소함량과 미세경도는 플라즈마내의 CH과 CN radical종의 세기에 크게 의존함을 의미한다. 그리고 Hf(C,N) 박막의 경우도 Ti(C,N) 박막의 경우와 유사하게 최대 미세경도값$(2460\;Hk_{0.025})$이 -600 V bias 전압과 10% 질소기체 혼합비를 사용한 경우에 얻어졌고, 이는 박막이 주로(111) 방향으로 성장됨에 기인한 것으로 사료된다.

근부환경(根部環境)에 따른 수도(水稻)의 영양생리적(營養生理的) 반응(反應)에 관(關)한 연구(硏究) (Studies on Nutrio-physiological Response of Rice Plant to Root Environment)

  • 박준규;김영섭;오왕근;박훈;시택문웅
    • 한국토양비료학회지
    • /
    • 제2권1호
    • /
    • pp.53-68
    • /
    • 1969
  • 생산력이 서로 다른 두 토양(土壤)에 유기물(有機物)을 첨가(添加)하여 근부(根部) 환경(環境)의 변화(變化)와 수도품종별(水稻品種別) 근(根)의 근부(根部) 환경(環境)에 대(對)한 반응(反應)을 육안(肉眼) 관찰(觀察)하고 양분흡수(養分吸收)를 조사(調査)하여 다음과 같은 결과(結果)를 얻었다. 1) 고위답토양(高位畓土壤)은 유기물(有機物)의 분해(分解)가 완만(緩慢)하며 분해평형점(分解平衡點)에서의 유기물(有機物) 함량(含量)이 높고 저위답토양(低位畓土壤)은 유기물(有機物)의 분해(分解)가 급속(急速)하며 분해평형점(分解平衡點)에 함량(含量)이 낮다. 2) 저위답토양(低位畓土壤)은 근(根)의 발육(發育)이 조해(阻害)되며 유기물(有機物) 첨가(添加)에 의(依)하여 더욱 조해(阻害)된다. 유기물(有機物)의 분해(分解)로 생기는 gas가 근(根) 주변(周邊)에 피막(被膜)을 형성(形成)하는데 기인(起因)하는것 같으며 이 결과(結果)로 T/R 값이 심히 떨어진다. 3) 품종간(品種間) 근부(根部) 환경(環境)에 반응력(反應力)이 현저하여 수원(水原) 82호(號)는 농림(農林) 25호(號) 보다 고위답(高位畓) 토양(土壤)에서는 흡수력(吸收力)이 강(强)하고 저위답토양(低位畓土壤)에서는 흡수력(吸收力)이 떨어진다. 4) 유기물(有機物) 첨가(添加)로 가리흡수(加里吸收)가 조해(阻害)되고 저위답토양(低位畓土壤)에서는 인산흡수(燐酸吸收)가 가장 조해(阻害)되는데 저위답토양(低位畓土壤)에 유기물(有機物)을 첨가(添加)하여 이 두 인자(因子)가 공역(共役)할 경우 양분흡수조해(養分吸收阻害)는 상승적(相乘的)으로 야기(惹起)된다. 5) 근(根)의 활력(活力)과 근수(根數), 지상부(地上部) 생육량(生育量) 및 근부생육량(根部生育量)과의 상관(相關)은 각각(各各) r=0.839, r=0.834, r=0.948로 모두 1%에서 유의성(有意性)이 있고 지상부(地上部)와 근부(根部)의 N.P.K. 흡수량(吸收量)과도 각각(各各), r=0.751, r=0.670, r=0.769, r=0.729, r=0.742, r=0.815로 5% 수준(水準)에서 유의성(有意性)이 있으며 근부(根部)의 생육량(生育量) 및 가리(加里)의 흡수량(吸收量)과의 상관계수(相關係數)가 가장 크다. 6) 근부환경(根部環境)이 나쁜곳에서는 좋은 곳에서보다 수도지상부(水稻地上部)의 질소농도(窒素濃度)는 낮고 근부(根部)는 훨씬 높아서 ammonia 과잉(過剩)의 해독(害毒)이 예상되며 인산(燐酸)과 가리(加里)는 양부위(兩部位)에서 모두 심히 낮으며 특히 간(稈)과 엽초(葉稍)에서 더욱 낮았다. 7) 근부환경(根部環境)이 나쁜 곳에서는 좋은곳에서보다 지상부(地上部)의 당(糖)과 전분(澱粉) 및 전탄수화물(全炭水化物) 함량(含量)이 높은데 반(反)하여 근부(根部)에서는 낮은데 환원당(還元糖)에서 더욱 심하여 근부(根部)에서는 당(糖)의 이상소모(異常消耗)가 예상되고 지상부(地上部)에서는 이에 대비하여 당(糖) 대사(代謝)가 해당방향(解糖方向)으로 주력(注力)함이 예상된다. 8) 근부환경(根部環境)이 나쁜곳에서는 근부(根部)에서 지상부(地上部)로 양분(養分)의 전류(轉流)가 극히 나빴다. 9) 근부환경(根部環境)이 나쁜곳에서는 황산(黃酸)의 함유율(含有率)이 높은데 엽신(葉身)에서 특히 높아 황산(黃酸) Ion에 의(依)한 ATP 생성(生成) 조해(阻害)가 예상되고 $P_2O_5/S$ 값은 고위답(高位畓) 유기물무시용구(有機物無施用區)의 1/5에 불과(不過)하여 P-S 비(比)가 관련된것 같다. 10) 근부환경(根部環境)이 나쁜곳에서는 지상부(地上部) 철(鐵)의 함량(含量)에는 차이(差異)가 없으나 Mn 함량(含量)은 상당히 적은 편이어서 $Fe/P_2O_5$ 값이 큰데 간(稈)과 엽초(葉稍)에서 7배(倍)나 되어 철인산(鐵燐酸) 침전에 의(依)한 통도(通導)의 기계적(機械的) 장해(障害)가 예상된다. 11) 토양중(土壤中) 조해성(阻害性) 인자(因子)는 유기물(有機物) 분해속도(分解速度)가 빠른 경우 악화(惡化)되어 근부기능기(根部機能基)를 조해(阻害)하여 양분(養分)을 조지(阻止)하고 체내(體內) Ion 평형(平衡)(N. P. K. S. Fe)을 교란(攪亂) 이상대사(異常代謝)(해당작용(解糖作用) A. T. P 생성약화(生成弱化))를 일으켜 전류(轉流)가 방해(防害)되고 따라서 각부위(各部位)의 생육(生育)의 불균형(不均衡)을 초래(招來)하는 연발생(連發生) 조해작용(阻害作用)이 순환가속(順換加速)하는 것으로 추정(推定)된다. 12) 고위답(高位畓)에서 질소(窒素)의 시용량(施用量)에 따른 근분포(根分布)를 조사(調査)한 결과(結果) 저위답(低位畓)은 표토부분(表土部分)에 분포(分布)하나 고위답(高位畓)에서는 심토(心土)에 분포비율(分布比率)이 많다. 질소(窒素) 무시용(無施用)은 지하(地下) 0~7cm 부위(部位)에 분포(分布) 비율(比率)이 크고 질소(窒素)를 시용(施用)하면 7~14cm 부위(部位)에 근분포(根分布) 비율(比率)이 많다. 전(全) 근중(根重)은 저위답(低位畓)에 비(比)하여 고위답(高位畓)에 많고 질소(窒素) 무시용(無施用)에 비(比)해서 질소(窒素) 10a 12kg 시용(施用)에서 많았다.

  • PDF

조사료 자원의 단백질 분획 및 Buffer 추출이 In Vitro 발효 성상, 분해율 및 Gas 생성량에 미치는 효과 (Effect of Protein Fractionation and Buffer Solubility of Forage Sources on In Vitro Fermentation Characteristics, Degradability and Gas Production)

  • 김광림;;;김종규;주종관;서성원;송만강
    • 한국초지조사료학회지
    • /
    • 제32권1호
    • /
    • pp.59-74
    • /
    • 2012
  • 본 시험에서 건초(티머시, 알팔파 및 클라인)와 짚류(톨페스큐 및 볏짚)의 buffer 용해도와 단백질 분획이 실시되었으며, 조사료 자원의 buffer 추출이 $In$ $vitro$ 발효 성상, 분해율 및 가스($CO_2$$CH_4$) 생성량에 미치는 효과를 조사하였다. 다른 조사료에 비해 총 단백질 중 buffer 가용성 조단백질과 A fraction은 알팔파 건초에서 각각 61% 및 41.77%로 가장 높았으며 볏짚에서 가장 낮았다(각각 42.8% 및 19.78%). 총단백질 중 B1 fraction은 조사된 조사료간 비교적 큰 차이를 보이지 않았으나 B2 fraction에서는 다른 조사료(6.34~8.85%)에 비하여 톨페스큐짚(10.05%) 및 클라인 건초(12.34)%에서 다소 높은 수준을 보였다. 총 단백질 중 B3 fraction이 차지하는 비율은 톨페스큐짚에서 38.49%로 가장 높았으나 다른 조사료 자원 간에는 큰 차이가 없었으며, C fraction의 경우 볏짚에서 가장 높은 비율(15.05%)을 보였다. 모든 사료에서 배양 개시 후 3시간(P<0.01) 및 6시간(P<0.05)에서 buffer 추출 전에 비해 추출 후 배양액의 pH가 증가되었으며, 배양 6시간(P<0.05) 및 12시간(P<0.001)에서 다른 사료에 비해 티모시 건초 및 알팔파 건초로부터의 pH가 낮았다. 배양액의 암모니아 농도는 모든 배양시간에서 가용성 물질의 추출 전 후에 다른조사료에 비해 알팔파 건초에서 가장 높았으나 모든 사료의 추출효과는 배양 3시간(P<0.01)에서만 나타났다. 배양액의 총 VFA 농도는 배양 24시간까지 알팔파 건초에서 가장 높았던 반면 톨페스큐짚과 볏짚에서 가장 낮았다. 또한 모든 조사료에서 buffer 추출 전에 비하여 추출후에 총 VFA 농도가 감소되었다(P<0.01~P<0.001). Acetic acid ($C_2$)의 조성 비율에서는 배양 6시간까지 추출 전에 더 높았으나(P<0.001) 사료 간 차이는 없었다. Propionic acid ($C_3$) 조성 비율 역시 배양 개시 후 3, 24 및 48시간(P<0.001)에서 추출 전에 더 높았으며, 6 및 12 시간의 배양액에서 대부분 건초(티모시, 알팔파 및 클라인)와 짚류(톨페스큐짚 및 볏짚) 간 차이가 있는 것으로 조사되었다(P<0.05). 그러나 butyric acid ($C_4$) 조성비율의 경우 대부분의 배양시간에서 사료 간 차이는 없었다. 건물에서의 분해율 관련 parameter 중 a 값은 조사된 전체 조사료에서 buffer 추출 전이 추출 후에 비해서 높았으며(P<0.001), 다른 조사료에 비해 톨페스큐짚과 볏짚에서 크게 낮았다(P<0.05). 또한 b 값의 경우 역시 추출 전에 비해 추출 후에서 현저히 낮았으나(P<0.001) 사료 간 차이는 없었다. 볏짚을 제외한 조사료에서 추출 후에 비해 추출 전의 건물 유효분해율(EDDM)이 더 높았다(P<0.001). 조단백질에서의 a, b 및 c 값은 추출 전에 비해 추출 후에서 현저히 낮았으나(P<0.05) 사료 간 차이는 없었다. 조단백질 유효분해율(EDCP)에서는 다른 조사료 종류에 비해 톨페스큐짚과 볏짚에서 낮았다(P<0.05). 한편, NDF의 경우 a 값과 b 값(P<0.01) 및 NDF 유효분해율(EDNDF, P<0.001)은 추출 후에 비해 추출 전에 더 높았으나(P<0.01) 사료 간 차이는 보이지 않았다. 반추위미생물에 의해 사료분해과정 중 생성되는 $CO_2$ 량도 24시간 배양까지는 추출 전에 더 많았으며(P<0.05~P<0.001), 톨페스큐짚과 볏짚에 비해 건초 형태의 조사료로부터의 $CO_2$ 생성량이 더 많았다(P<0.05~P<0.01). 메탄가스($CH_4$) 생성량 역시 모든 배양시간에서 추출 전에 비해 추출 후에 크게 감소되었으며(P<0.01~P<0.001), 12~24시간을 제외하고는 짚류에 비해 건초에서 현저히 높은(P<0.05) 것으로 나타났다. 본 시험의 결과를 종합하면, 조사료 자원에 대한 buffer 용해도와 단백질의 분획이 $In$ $vitro$ VFA 농도와 분해율 및 gas ($CO_2$$CH_4$) 발생량 간 상호 밀접한 관계를 보이는 것으로 여겨진다. 이에 따라 조사료 이용 효율 개선을 위해 조사료자원에 대한 buffer 용해도와 단백질 분획을 반추동물 TMR 조제에 활용할 필요가 있는 것으로 여겨진다.