• Title/Summary/Keyword: aminoalkoxide

Search Result 6, Processing Time 0.019 seconds

Preparation of Novel Magnesium Precursors and MgO Thin Films Growth by Atomic Layer Deposition (ALD)

  • Kim, Hyo-Suk;park, Bo Keun;Kim, Chang Gyoun;Son, Seung Uk;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.364.2-364.2
    • /
    • 2014
  • Magnesium oxide (MgO) thin films have attracted great scientific and technological interest in recent decades. Because of its distinguished properties such as a wide band gap (7.2 eV), a low dielectric constant (9.8), a low refractive index, an excellent chemical, and thermal stability (melting point=$2900^{\circ}C$), it is widely used as inorganic material in diverse areas such as fire resistant construction materials, optical materials, protective layers in plasma display panels, buffer layers of multilayer electronic/photonic devices, and perovskite ferroelectric thin films. Precursor used in the ALD requires volatility, stability, and low deposition temperature. Precursors using a heteroleptic ligands with different reactivity have advantage of selective reaction of the heteroleptic ligands on substrate during ALD process. In this study, we have synethesized new heteroleptic magnesium precursors ${\beta}$-diketonate and aminoalkoxide which have been widely used for the development of precursor because of the excellent volatility, chelating effects by increasing the coordination number of the metal, and advantages to synthesize a single precursor. A newly-synthesized Mg(II) precursor was adopted for growing MgO thin films using ALD.

  • PDF

Synthesis of Novel Platinum Precursor and Its Application to Metal Organic Chemical Vapor Deposition of Platinum Thin Films

  • Lee, Sun-Sook;Lee, Ho-Min;Park, Min-Jung;An, Ki-Seok;Kim, Jin-Kwon;Lee, Jong-Heun;Chung, Taek-Mo;Kim, Chang-Gyoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1491-1494
    • /
    • 2008
  • A novel platinum aminoalkoxide complex, Pt$(dmamp)_2$ has been prepared by the reaction of cis-$(py)_2PtI_2$ with two equivalents of Na(dmamp) (dmamp = 1-dimethylamino-2-methyl-2-propanolate). Single-crystal X-ray crystallographic analysis shows that the Pt(dmamp)2 complex keeps a square planar geometry with each two nitrogen atoms and two oxygen atoms having trans configuration. Platinum films have been deposited on TaN/ Ta/Si substrates by metal organic chemical vapor deposition (MOCVD) using Pt$(dmamp)_2$. As-deposited platinum thin films did not contain any appreciable amounts of impurities except a little carbon. As the deposition temperature was increased, the films resistivity and deposition rate increased. The electrical resistivity (13.6 $\mu\Omega$cm) of Pt film deposited at 400 ${^{\circ}C}$ is a little higher than the bulk value (10.5 $\mu\Omega$cm) at 293 K. The chemical composition, crystalline structure, and morphology of the deposited films were investigated by X-ray photoelectron spectroscopy, X-ray diffraction, and atomic force microscopy.

Synthesis and Characterization of Novel Rare-earth Oxides Precursors

  • Lee, Euy Jin;Park, Bo Keun;Chung, Taek-Mo;Kim, Chang Gyoun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.366.1-366.1
    • /
    • 2014
  • The rare-earth oxides M2O3 (M=La, Pr, Gd) are good insulators due to their large band gap (3.9eV for Pr2O3, 5.6eV for Gd2O3), they have high dielectric constants (Gd2O3 K=16, La2O3 K=27, Pr2O3 K=26-30) and, compared to ZrO2 and HfO2, they have higher thermodynamic stability on silicon making them very attractive materials for high-K dielectric applications. Another attractive feature of some rare-earth oxides is their relatively close lattice match to that of silicon, offering the possibility of epitaxial growth and eliminating problems related to grain boundaries in polycrystalline films. Metal-organic chemical vapor deposition (MOCVD) has been preferred to PVD methods because of the possibility of large area deposition, good composition control and excellent conformal step coverage. Herein we report on the synthesis of rare-earth oxide complexes with designed alkoxide and aminoalkoxide ligand. These novel complexes have been characterized by means of FT-IR, elemental analysis, and thermogravimetric analysis (TGA).

  • PDF