• Title/Summary/Keyword: amino resin

Search Result 84, Processing Time 0.026 seconds

A Study of Relations of Chain Lengths and Properties for Bifunctional linear DGEBF/Linear Amino (EDA, HMDA) Cure Systems (선형 이관능성 DGEBF/선형아민(EDA, HMDA) 경화계의 경화제 사슬길이와 물성과의 관계에 대한 연구)

  • Myung In-Ho;Lee Jae-Rock
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.37-43
    • /
    • 2004
  • To determine the effect of chain length and chemical structure of linear amine curing agents on thermal and mechanical properties, a standard bifunctional linear DGEBF epoxy resin was cured with EDA and HMDA having amine group at the both ends of main chain in a stoichiometrically equivalent ratio in condition of preliminary and post cure. From this work, the effect of linear amine curing agents on the thermal and mechanical properties is significantly influenced by numbers of carbon atoms of main chain. In contrast, the results show that the DCEBF/EDA system having two carbons had higher values in the thermal stability, density, shrinkage (%), grass transition temperature, tensile modulus and strength, flexural modulus and strength than the DGEBF/HMDA system having six carbons, whereas the DGEBF/EDA cure system had relatively low values in maximum ekothermic temperature, maximum conversion of epoxide, thermal expansion coefficient than the DGEBF/HDMA cure system. These findings indicate that the packing capability (rigid property) in the EDA structure affects the thermal and mechanical properties predominantly. It shows that flexural fracture properties have a close relation to flexural modulus and strength.

Property Changes due to Numbers of Nitrogen Atom Bonded at Ethyl Group, Included in Main Chain of Curing Agents of DGEBGF/Linear Amino Systems (DGEBF/선형아민 계에서의 경화제 주쇄에 포함된 에틸기에 결합된 질소원자 개수에 따른 물성변화 연구)

  • Myung In-Ho;Lee Jae-Rock
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.44-51
    • /
    • 2004
  • To determine the effect of numbers of nitrogen atom bonded at ethyl group included in main chain of linear amine curing agents of epoxy-cure systems on the thermal and mechanical properties, standard epoxy resin DGEBF was cured with DETA, TETA and TEPA in a stoichiometrically equivalent ratio. From this work, the effect of curing agents of the DGEBF/amine systems oil the thermal and mechanical properties was significantly influenced by numbers of nitrogen atom of curing agents. The results showed that heat of reaction increased, and maximum exothermic temperature decreased with the decrease of numbers of nitrogen atom. In case of cured systems, density and maximum conversion(%) had no relation to numbers of nitrogen atom, but flexural modulus and tensile modulus increased with the decrease of numbers of nitrogen atom in main chain. Thermal stability, shrinkage(%), Tg, tensile and flexural strength showed irregular tendency having nothing to do with numbers of nitrogem atom at a sight. This findings imply that the differences in the maximum conversion(%) about the chain length of curing agents affect the thermal and mechanical properties.

Peptide Domain Involved in the Interaction between Membrane Protein and Nucleocapsid Protein of SARS-associated Coronavirus

  • Fang, Xiaonan;Ye, Linbai;Timani, Khalid Amine;Li, Shanshan;Zen, Yingchun;Zhao, Meng;Zheng, Hong;Wu, Zhenghui
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.381-385
    • /
    • 2005
  • Severe acute respiratory syndrome (SARS) is an emerging infectious disease associated with a novel coronavirus (CoV) that was identified and molecularly characterized in 2003. Previous studies on various coronaviruses indicate that protein-protein interactions amongst various coronavirus proteins are critical for viral assembly and morphogenesis. It is necessary to elucidate the molecular mechanism of SARS-CoV replication and rationalize the anti-SARS therapeutic intervention. In this study, we employed an in vitro GST pull-down assay to investigate the interaction between the membrane (M) and the nucleocapsid (N) proteins. Our results show that the interaction between the M and N proteins does take place in vitro. Moreover, we provide an evidence that 12 amino acids domain (194-205) in the M protein is responsible for binding to N protein. Our work will help shed light on the molecular mechanism of the virus assembly and provide valuable information pertaining to rationalization of future anti-viral strategies.

CHEMO-MECHANICAL REMOVAL OF CARIES IN PRIMARY MOLAR: REPORT OF 2 CASES (화학-기계적 우식 제거법을 이용한 유구치 우식의 치료: 증례보고)

  • Lee, Hyeok-Sang;Lee, Jae-Cheoun;Kim, Young-Jae;Kim, Jung-Wook;Kim, Chong-Chul;Jang, Ki-Taeg
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.2
    • /
    • pp.299-303
    • /
    • 2004
  • The conventional drilling method of caries removal makes vibration and thermal stimuli, so that children are afraid of dental treatment. Recently, various non-invasive caries removal techniques of alternatives to traditional methods are introduced and chemo-mechanical caries removal is one of them. $Carisolv^{TM}$ comprises a gel that is composed of three different amino acids and a low concentration of sodium hypochlorite and specially-designed hand instruments. This report describes two cases of dental caries treatment with $Carisolv^{TM}$. The carious dentin was eliminated with $Carisolv^{TM}$ gel with instruments and then composite resin restoration was conducted.

  • PDF

Synthesis and Characteristics of Aminated Poly(arylene ether sulfone) as Thermostable Anion Exchanger (내열성 음이온교환수지로서 Aminated Poly(arylene ether sulfone)의 합성과 물성)

  • 손원근;유현지;황택성;김동철;김상헌;송해영
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • In this study, poly(arylene ether sulfone) (PAES) having thermal stability and excellent mechanical properties was synthesized to be useful for the matrix of anion exchange resin. $1^{\circ}$-Aminated poly(arylene ether sulfone) ($1^{\circ}$-APAES) was prepared by reduction reaction after lithiation of PAES. Then $3^{\circ}$-APAES was Prepared by alkylation of the amino group of $1^{\circ}$-APAES. The structures of PAES and APAESs were confirmed with FT-IR and $^1H-NMR$ spectroscopy. Also, thermal properties of the resins were characterized by DSC and TG analysis. The introduction of amine groups in PAES resulted in the increase of glass transition temperature and decrease of initial thermal degradation temperature. The ion exchange capacities of $1^{\circ}$-APAES and $1^{\circ}$-APAES were 1.19 and 1.45 meq/g, respectively.

Light-regulated Translation of Chloroplast Reaction Center Protein D1 mRNA in Chlamydomonas reinhardtii

  • Kim, Jungmook
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.57-62
    • /
    • 1999
  • Light-regulated translation of chloroplast mRNAs requires nuclear-encoded trans-acting factors that interact with the 5' untranslated region (UTR) of these mRNAs. A set of four proteins (60, 55, 47, and 38 kDa) that bind to the 5'-UTR of the psbA mRNA had been identified in C. reinhardtii. 47 kDa protein (RB47) was found to encode a chloroplast poly (A)-binding protein (cPABP) that specifically binds to the 5'-UTR of the psbA mRNA, and essential for translation of this mRNA, cDNA encoding 60 kDa protein (RB60) was isolated, and the amino acid sequence of the encoded protein was highly homologous to plants and mammalian protein disulfide isomerases (PDI), normally found in the endoplasmic reticulum (ER). Immunoblot analysis of C. reinhardtii proteins showed that anti-PDI recognized a distinct protein of 56 kDa in whole cell extract, whereas anti-rRB60 detected a 60 kDa protein. The ER-PDI was not retained on heparin-agarose resin whereas RB60 was retained. In vitro translation products of the RB60 cDNA can be transported into C. reinhardtii chloroplast in vitro. Immunoblot analysis of isolated pea chloroplasts indicated that higher plant also possess a RB60 homolog. In vitro RNA-binding studies showed that RB60 modulates the binding of cPABP to the 5'-UTR of the psbA mRNA by reversibly changing the redox status of cPABP using redox potential or ADP-dependent phosphorylation. Site-directed mutagenesis of -CGHC- catalytic site in thioredoxin-like domain of RB60 is an unique PDI located in the chloroplast of C. reinhardtii, and suggest that the chloroplast PDI may have evolved to utilize the redox-regulated thioredoxin like domain as a mechanism for regulating the light-activated translation of the psbA mRNA.

  • PDF

북한산국립공원의 식생개관

  • 임양재
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1985.08b
    • /
    • pp.7-18
    • /
    • 1985
  • Light-regulated translation of chloroplast mRNAs requires nuclear-encoded trans-acting factors that interact with the 5' untranslated region (UTR) of these mRNAs. A set of four proteins (60, 55, 47, and 38 kDa) that bind to the 5'-UTR of the psbA mRNA had been identified in C. reinhardtii. 47 kDa protein (RB47) was found to encode a chloroplast poly (A)-binding protein (cPABP) that specifically binds to the 5'-UTR of the psbA mRNA, and essential for translation of this mRNA, cDNA encoding 60 kDa protein (RB60) was isolated, and the amino acid sequence of the encoded protein was highly homologous to plants and mammalian protein disulfide isomerases (PDI), normally found in the endoplasmic reticulum (ER). Immunoblot analysis of C. reinhardtii proteins showed that anti-PDI recognized a distinct protein of 56 kDa in whole cell extract, whereas anti-rRB60 detected a 60 kDa protein. The ER-PDI was not retained on heparin-agarose resin whereas RB60 was retained. In vitro translation products of the RB60 cDNA can be transported into C. reinhardtii chloroplast in vitro. Immunoblot analysis of isolated pea chloroplasts indicated that higher plant also possess a RB60 homolog. In vitro RNA-binding studies showed that RB60 modulates the binding of cPABP to the 5'-UTR of the psbA mRNA by reversibly changing the redox status of cPABP using redox potential or ADP-dependent phosphorylation. Site-directed mutagenesis of -CGHC- catalytic site in thioredoxin-like domain of RB60 is an unique PDI located in the chloroplast of C. reinhardtii, and suggest that the chloroplast PDI may have evolved to utilize the redox-regulated thioredoxin like domain as a mechanism for regulating the light-activated translation of the psbA mRNA.

  • PDF

Enzymatic Biotransformation of Ginsenoside Rb1 and Gypenoside XVII into Ginsenosides Rd and F2 by Recombinant β-glucosidase from Flavobacterium johnsoniae

  • Hong, Hao;Cui, Chang-Hao;Kim, Jin-Kwang;Jin, Feng-Xie;Kim, Sun-Chang;Im, Wan-Taek
    • Journal of Ginseng Research
    • /
    • v.36 no.4
    • /
    • pp.418-424
    • /
    • 2012
  • This study focused on the enzymatic biotransformation of the major ginsenoside Rb1 into Rd for the mass production of minor ginsenosides using a novel recombinant ${\beta}$-glucosidase from Flavobacterium johnsoniae. The gene (bglF3) consisting of 2,235 bp (744 amino acid residues) was cloned and the recombinant enzyme overexpressed in Escherichia coli BL21(DE3) was characterized. This enzyme could transform ginsenoside Rb1 and gypenoside XVII to the ginsenosides Rd and F2, respectively. The glutathione S-transferase (GST) fused BglF3 was purified with GST-bind agarose resin and characterized. The kinetic parameters for ${\beta}$-glucosidase had apparent $K_m$ values of $0.91{\pm}0.02$ and $2.84{\pm}0.05$ mM and $V_{max}$ values of $5.75{\pm}0.12$ and $0.71{\pm}0.01{\mu}mol{\cdot}min^{-1}{\cdot}mg$ of $protein^{-1}$ against p-nitrophenyl-${\beta}$-D-glucopyranoside and Rb1, respectively. At optimal conditions of pH 6.0 and $37^{\circ}C$, BglF3 could only hydrolyze the outer glucose moiety of ginsenoside Rb1 and gypenoside XVII at the C-20 position of aglycon into ginsenosides Rd and F2, respectively. These results indicate that the recombinant BglF3 could be useful for the mass production of ginsenosides Rd and F2 in the pharmaceutical or cosmetic industry.

Purification of the Glycomacropeptide from Cheese Whey (치즈 유청으로부터 Glycomacropeptide의 분리.정제)

  • Yoon, Y.C.;Cho, J.K.;Song, C.H.;Lee, S.;Chung, C.I.
    • Food Science of Animal Resources
    • /
    • v.20 no.2
    • /
    • pp.159-165
    • /
    • 2000
  • Glycomacropeptide(GMP) was purified from cheese whey which is obtaining as a byproduct in cheese producing. Cheese whey was first concentrated 10 times with a ultrafiltration aparratus, and then heated at 95$^{\circ}C$ for 5 min. The concentrated fraction was centrifuged at 20,000$\times$g for 30 min to remove fat layer. The supernatant layer enriched GMP protein was fractionated by ion exchange chromatography on DEAE-Sepharose Fast Flow column. GMP was bound to DEAE resin and eluted with 0.1~0.25 M NaCl when using a linear NaCl gradient from 0 M to 0.5 M. The purified GMP gave a single band of 24 kDa which seems to be trimer molecular weight in SDS-PAGE, and migrated to the same molecular weight with control GMP obtained commercially. Its amino acid composition were consistent with that of standard GMP. About 0.71 g of GMP was recovered from 1 L of cheese whey. These results indicate that glycomacropeptide could be simply purified from cheese whey by using ultrafiltration and DEAE column chromatography.

  • PDF

Investigating The Potential of Human Hair Produced from The Beauty Parlor and Barbershop as a Raw Material of Wood Adhesives (미·이용업 폐기물 인모의 목재접착제 원료화 가능성 탐색)

  • Yang, In;Ahn, Sye Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.599-612
    • /
    • 2017
  • Human hair (HH) is produced as a waste from beauty parlor and barbershop. HH-based adhesives were formulated with NaOH-hydrolyzed HH, $H_2SO_4$-hydrolyzed chicken blood (CB) and PF as a crosslinking agent. Physicochemical properties and retention rate against hot water of the adhesives were measured to investigate the potential of HH as a raw material of wood adhesives. HH was composed of keratin-type protein of 80% and over. Ash of less than 0.1% was contained in HH. Among the amino acids included in HH, glutamic acid showed the highest content, followed by cysteine, serine, arginine and threonine. Solid content of the adhesives ranged from 33.2% to 41.8% depending on hydrolysis conditions of HH and PF type. Viscosity at $25^{\circ}C$ ranged from 300 to $600mPa{\cdot}s$ resulting in a sprayable adhesive. Retention rate against hot water measured to evaluate the water resistance of adhesives was the highest in the cured resin formulated with 5% NaOH-hydrolyzed HH and 5% $H_2SO_4$-hydrolyzed CB. Meanwhile, the molar ratio of formaldehyde to phenol in PF did not have a significant impact on the retention rate of HH-based adhesives. When the retention rates of HH-based adhesives were compared to those of conventional wood adhesive resins used for the production of wood-based panels extensively, HH-based adhesives formulated with 30 wt% PF showed lower retention rate than commercial urea-formaldehyde resin. However, when PF content was increased to 35 wt%, the retention rate greatly increased and approached to that of commercial melamine-urea-formaldehyde resin. Except for the results mentioned above, the analysis of economic feasibility suggests that HH-based adhesives can be used for the production of wood-based panels if HH is hydrolyzed in proper conditions and then the HH-based adhesives are formulated by the HH hydrolyzates with 35 wt% PF.