• Title/Summary/Keyword: amine

Search Result 1,527, Processing Time 0.031 seconds

Quantitative Analysis of Silanization Degree of Silica Nanoparticles Modified with Bis[3-(trimethoxysilyl)propyl]amine Coupling Agent (Bis[3-(trimethoxysilyl)propyl]amine 커플링제로 개질된 실리카 나노입자의 실란화도 정량 분석)

  • Jeon, Ha-Na;Kim, Jung-Hye;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.372-379
    • /
    • 2012
  • In this study, we treated silica nanoparticles with bis[3-(trimethoxysilyl)propyl]amine (BTMA) silane coupling agent to modify their surfaces. We investigated the effects of BTMA hydrolysis time, BTMA concentration and BTMA treatment time on the degree of silanization reaction of silica nanoparticles. We used Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and solid state cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR) to obtain quantitative data. We found the decrease of isolated Si-OH peak intensity at 3747 $cm^{-1}$ and the increase of $-CH_2 $stretching and bending peaks with increasing hydrolysis time, concentration and treatment time of BTMA. EA analysis results also supported this trend. We found a strong effect of BTMA concentration on the degree of silanization of the silica particles, but weak effects of the hydrolysis time and the treatment time.

Performance Study of Membrane Capacitive Deionization Installed with Sulfonated Poly(ether ether ketone) and Poly(vinyl amine)/poly(vinyl alcohol) Membranes (Sulfonated Poly(ether ether ketone) 및 Poly(vinyl amine)/poly(vinyl alcohol) 혼합막이 장착된 막결합형 축전식 탈염공정의 성능 연구)

  • Kim, Ka young;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.62-69
    • /
    • 2016
  • In this study, sulfonated poly(ether ether ketone) (SPEEK) as cation exchange membrane and blended and crosslinked poly(vinyl amine) (PVAm) with poly(vinyl alcohol) (PVA) membrane as anion exchange membrane were used and then the performance experiments of the membrane capacitive deionization (MCDI) installed with both membranes were carried out. The newly prepared anion exchange membrane were characterized through water content, ion exchange capacity and FT-IR. The crosslinking time of 3 h to 5 h indicated that the salt removal was reduced from 81.3, 65.7% to 53.8%. The effect of PVAm contents from 40, 60, to 80% on the salt removal was shown 81.3, 75.2 and 37.7%, respectively. As a result, it was concluded that the crosslinking time and the content of PVAm had an influence on the salt removal efficiency.

DGEBA-MDA-SN-Hydroxyl Group System and Composites -Cure Kinetics and Mechanism in DGEBA/MDA/SN/HQ System- (DGEBA-MDA-SN-Hydroxyl계 복합재료의 제조 -DGEBA-MDA-SN-HQ계의 경화반응 속도론 및 메카니즘-)

  • Shim, Mi-Ja;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.517-523
    • /
    • 1994
  • The effects of cure kinetics and mechanism of DGEBA(diglycidyl ether of bisphenol A)/MDA(4,4'-methylene dianiline) with SN(succinonitrile) and HQ(hydroquinone) as an additive and accelerator were investigated. Cure kinetics was evaluated by Kissinger equation and fractional-life method through DSC analysis. The activation energy has hydroxyl group as an accelerator, the activation energy and the starting cure-temperature were lower than those of DGEBA/MDA/SN system. Cure mechanism of those systems was investigated through FT-IR according to the various SN contents. The ratio was SN : HQ = 4 : 1. It has been known that the cure reactions of an epoxy-diamine system are composed of primary amine-epoxy reaction, secondary amino-epoxy reaction and epoxy-hydroxyl group reaction. But in DGEBA/MDA/SN system, primary amino-CN group reaction and CN group-hydroxyl group reaction were added to the above mentioned reactions. These reactions attributed to the long main chain and the low crossliking density. And in DGEBA/MDA/SN/HQ system, hydroxyl group of HQ formed a transition state with epoxide group and amime group and also opened the ring of the epoxide group rapidly, then amino-epoxy reaction took place easily.

  • PDF

Photopodegradation efficiency of visible light cured dental resin composites with novel photosensitizers (가시광선 중합형 복합수지용 광증감제의 분해율 비교)

  • Sun, Gum-Ju
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.291-297
    • /
    • 2011
  • Purpose: The purpose of this study was to know the availability of three photosensitizers, CQ, PD, DA, as a photosensitizer of dental resin composite. We want to know abortion band around visible light region for the using potential possibility as a photosensitizer for visible light cured dental composite resin. And I studied to know the relative photodecomposition ratio of three photosensitizers with or without photoinitiator, DAEM. Methods: The photodecomposition of three photosensitizers were studied by UV absorption spectroscopy in ethanol and determined by same instrument with irradiation time for relative photodecomposition. In order to study the effect of amine on photodecomposition was added the DAEM in the photosensitizer solution and the relative rate was measured by the same procedure with aove mentioned. Results: The all of three photosensitizers are absorbed around visible light region. The relative rate of decrease in absorbance incereased in the order: CQ < BD < PD. The effect of DAEM on the photodecomposition of the photosensitizers was appeared different results without DAEM. The photodecomposition rate of PD and DA decreased somewhat with the addition of amine, while that of CQ increased. The rtealtive photodecomposition rate increased in the oprder: BD ${\leq}$ CQ < PD with the addition of amine, but the differnce was not significant. Conclusion: PD and DA like CQ gives to the possibility of use as a photosensitizer for visible light cured dental composite resin by absorption around visible light region and photodecomposition in the maximum absorption wavelength. And it is showed that PD and DA are not effective decomposed with amine initiator, DAEM but CQ decomposed with DAEM effectively. This result may be due to a different mechanism operating for the decomposition of photosensitizers in the presence of amine.

Effect of Drying Conditions on Biogenic Amine Production and Lipid Oxidation in Semi-dried Pacific Saury Cololabis saira, Guamegi (꽁치(Cololabis saira) 과메기의 지질산화 및 biogenic amine 생성에 건조조건이 미치는 영향)

  • Shim, Kil-Bo;Lim, Chi-Won;Lee, So-Jeong;Jung, Hye-Youn;Shim, Hye-Jin;Yoon, Ho-Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.5
    • /
    • pp.470-477
    • /
    • 2011
  • This study reviewed the effect of the drying conditions on the production of biogenic amines and lipid oxidation in semi-dried Pacific saury Cololabis saira or Guamegi. The moisture content of the Guamegi ranged from $32.71{\pm}2.37$ to $45.9{\pm}2.60$ g/100 g. The respective ranges of the acid value (AV) and peroxide value (POV) were $1.39{\pm}0.40$ to $15.79{\pm}0.47$ mg KOH/g and $76.14{\pm}2.19$ to $282.84{\pm}2.34$ meq/kg on drying for 3 days. The AV and POV increased for up to 3 days of drying and the values differed according to the amount of sunlight and temperature. However, lipid oxidation was reduced in Guamegi manufactured using a cold-air drying method. The fatty acid composition and the biogenic amine content in Guamegi during drying did not differ significantly with the drying method or drying date. The main saturated, monoene and polyene fatty acids were palmitic acid, eicosenoic & erucic acids, and eicosapentaenoic & docosahexaenoic acids, respectively. At 16.67 to 71.89 mg/kg, the histamine content was higher than that of other biogenic amines and it increased significantly during drying. In conclusion, this study showed that the packaging and drying conditions of Guamegi products need to be improved to inhibit lipid oxidation and biogenic amine formation.

Preparation of Platinum Amine Complex Solution from Pt Scrap and its Catalytic Activity of Soot Oxidation (백금 스크랩으로부터 아민산백금용액 제조 및 Soot Oxidation 특성)

  • Choi, Seung Hoon
    • Resources Recycling
    • /
    • v.27 no.3
    • /
    • pp.93-99
    • /
    • 2018
  • Effective extraction of platinum group elements by dissolving waste platinum scrap from the display industry and solvent extraction, was studied. The extracted platinum solution was prepared as a precursor solution for diesel automotive exhaust gas purification catalyst and its catalytic activity was tested. The behavior of aqueous species of platinum was investigated through solution chemistry and based on the existence and behavior of these chemical species, the possibility of extraction and separation was established. By dissolving waste scrap by electrochemical method, the dissolution time of scrap was shortened and the extraction efficiency was increased. Through separation and removal of rhodium component, solvent extraction by TBP, and stripping by hydrochloric acid, Pt-Chloride-$H_2O$ solution was prepared. And then, an platinum amine complex solution through amination reaction with this solution as a raw material was prepared. The possibility of producing high-value platinum compounds from platinum group waste scrap was investigated by preparing platinum amine complex solution and then examining the catalytic activity with this amine precursor on the combustion reaction of carbon black.

Study on Isolative Determination Methylephedrine Hydrochloride and Ephedrine Hydrochloride in the Mixed Preparation (혼합제제중 Methylephedrine Hydrochloride와 Ephedrine Hydrochloride의 분리정량에 관한 연구)

  • Ko, In-Suk
    • Korean Journal of Pharmacognosy
    • /
    • v.1 no.3
    • /
    • pp.93-99
    • /
    • 1970
  • There have been reported by several workers for the isolation and determination of the amine derivatives as Metbylephedrine Hydrochloride and Ephedrine Hydrochloride adopting neutralization method, steam distillation method, non-aqous titration method, ion-exchange resin method, titration method after acetylation, colorimetric method, gravimetric method, iodine titration method and gas chromatography. Those methods mentioned in above, can be practically applied for the sample which is not mixed one mith the other amine compounds. Presently, it has not shown on the isolative determination of the mixed sample of amine derivatives. In this paper, it is discussed on the isolative determination of Methylephedrine Hydrochloride as the tertiary amine compound and Ephedrine Hydrochloride as the secondary amine compound. According to the results of the experiment, it could be summarized as follows: 1. There is no time-variation on the color reaction of Methylephedrine Hydrochloride and Ephedrine Hydrochloride with the color reagent, bromcresolgreen. And Methylephedrine Hydrochloride and Ephedrine Hydrochloride, respectively, can be determined spectrophotometrically by means oft his color reaction. 2. For the isolation of Methylephedrine Hydrochloride and Ephedrine Hydrochloride from the mixed sample, Methylephedrine Hydrochloride can be eluted by chloroform, while Ephedrine Hydrochloride by the mixed solvent of chloroform and ethylalcohol (2:1), from the celite column adsorbed at pH6.4 followed by extraction with ether undersodium hydroxide alkali re action. 3. When the sample is mixed with quinine hydrochloride, dihydrocodeine bitartate, and noscapine, these mixed compounds can be eliminated by means of stram distillation. 4. When the sample is mixed with chlorpheniramine maleate, dextromethorphan hydrobromide and diphenhydramine hydrochloride, the mixed compounds can be eliminated by means of steam distillation and celite adsorption column chromatography, In conclusion, the isolative determination method for Methylephedrine Hydrochloride and Ephedrine Hydrochloride studied in this paper, indicates with the excellent reproducibility and accuracy.

  • PDF

Rapid Detection Methods for Biogenic Amines in Foods (식품 내 바이오제닉아민 신속검출기술 개발 동향)

  • Lee, Jae-Ick;Kim, Young-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.141-147
    • /
    • 2012
  • Biogenic amines have been used as chemical indicators to estimate bacterial spoilage of foods, particularly fish and fish products, cheese, and fermented foods. So far many chromatography methods have been developed to detect biogenic amines in foods. Although these instrumental analyses exhibit good sensitivity, they cannot be used as rapid detection methods due to the chemical treatment of the samples and the time-consuming process involved. For the rapid and simple detection of biogenic amines, enzyme linked immunosorbent assay kits are commercially available. In addition, analytical systems with enzyme-based amperometric biosensor detection have been increasingly developed. The biosensors used to detect the biogenic amines are based on the action of either amine oxidases or amine dehydrogenases that catalyzes the oxidative deamination of biogenic amines to the corresponding aldehydes and ammonia. This review mainly focused on the principle, development, and applications of the detection methods for rapid detection of biogenic amines in foods.

The CO2 Absorption of Synthetic Amine using the Ethylene Oxide-Ammonia Reaction (에폭사이드와 암모니아의 반응을 이용한 합성아민의 이산화탄소 흡수연구)

  • CHOI, JEONGHO;YOON, YEOIL;PARK, SUNGYOUL;BAEK, ILHYUN;NAM, SUNGCHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.5
    • /
    • pp.561-569
    • /
    • 2017
  • In this study, a synthetic amine made using the ethylene oxide-ammonia reaction was used as an absorbent to remove carbon dioxide. Existing absorbents were used in a mix in order to improve performance; however, because the ethylene oxide-ammonia reaction generates primary, secondary, and tertiary amines simultaneously, it has the merit that separate mixing of the absorbents was not needed. The performance of carbon dioxide absorption with the synthetic amine was compared to that of MEA. As a result of an experiment, it was determined that the $CO_2$ loading was 1.15 times better than that of MEA (a commonly used amine), while the cyclic capacity was 2.28 times higher. Because the heat of reaction was 1.10 times lower than for MEA, the synthetic amine showed superior performance in terms of absorption and regeneration.

Electrochemical Behaviour of (2,4-difluoro-phenyl)-(2-phenyl-1H-quinolin-4-ylidene)-amine in Aprotic Media (비양자성 매개물에서 (2, 4-difluoro-phenyl)-(2-phenyl-1H-quinolin-4-ylidene)-amine의 전기화학적 반응)

  • Kumari, Mamta;Sharma, D.K.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.50-56
    • /
    • 2011
  • The electrochemical reduction of (2,4-difluoro-phenyl)-(2-phenyl-1H-quinolin-4-ylidene)-amine was investigated in 0.1 M tetrabutylammoniumbromide in N,N-dimethylformamide at glassy carbon electrode (GCE) using the technique of cyclic voltammetry at the room temperature (290 K). The reduction of imines occurs in two successive steps, involving one electron in each. In this medium the first peak was observed at about -0.793 V (vs Ag/$Ag^+$) at the glassy carbon electrode surface, which is more stable and well defined as compared to the second peak. The diffusion coefficient ($D_0$) of imine in the investigated solvent media has been calculated using the modified Randles-Sevcik equation. The electron transfer coefficient ($\alpha$) of the reactant species has also been calculated.