• Title/Summary/Keyword: amide

Search Result 696, Processing Time 0.029 seconds

Synthesis of homovanillic amide derivatives and their analgesic activity

  • Lim, Hee-Jong;Jung, Young-Sik;Ha, Deok-Chan;Seong, Churl-Min;Lee, Jong-Cheol;Choi, Jin-Il;Choi, Seung-Won;Han, Man-So;Lee, Kwang-Sook;Park, No-Sang
    • Archives of Pharmacal Research
    • /
    • v.19 no.3
    • /
    • pp.246-247
    • /
    • 1996
  • In the previous reports (Park et al., 1991, and 1993), we described the synthesis and analgesic effects of various homovanillic amides as analogs of capsaicin. In the study, we tried to enhance the analgesic actvity of capsaicin by structural modification. Our study has been performed in three directions. First, the amide bond of capsaicin was transposed. Second, a phenyl ring was introduced to replace a double bond of capsaicin. Finally, aminoethylation was performed on 4-hydroxy group of capsaicin to improve oral bioavailability. These studies have led to N-(3-phenylpropyl)homovanillic amide 2 which has high analgesic activity. Our continuing efforts in this area have focused on the introduction of various substituents on the phenyl ring of 2 as well as their pharmacological studies. We report herein the synthesis of homovanillic amide derivatives and their analgesic activity.

  • PDF

Synthesis and Characterization of Copoly(amide-imide) Derivatives and Ultrafiltration Membrane Performances I - Preparation of Copoly(amide-imide)s by One-step Method -

  • Jeon, Jong-young;Shin, Bong-Seob
    • Korean Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.9-16
    • /
    • 2001
  • The diamide-diamine having carboxylic acid was prepared by direct condensation of 1,2,4-benzenetricarboxylic acid with bits[4- (3-aminophenoxy ) phenyl] sulfone and bits(4-aminouhenyl)-1,4- diisopropylbenzene in medium consisting of triphenylphosphite, LiCl, and N-methyl-2-pyrrolidone. Copoly (amide-imide) derivatives with high molecular weight could be synthesized by one-step polycondensation of prepared diamide-diamine having carboxylic acid and various dianhydride compounds. Depending on the chemical structure and composition of polymer backbones, the viscosities of polymers were found to range between 0.87∼ 1.57 dL/B. All the polymers showed good thermal stability up to 320$\^{C}$ and the 10% weight loss temperature was observed in the range of 450∼540$\^{C}$ in a thermogravimetric traces. The glass transition was recorded in the temperature range of 200 ∼ 270$\^{C}$. All the polymers showed an amorphous nature on a differential scanning calorimetric thermograms. These polymers generally had good mechanical properties and readily soluble in various polar solvents. Further, it was proved that their properties could be determined from the composition.

  • PDF

Facile One-Pot Synthesis of PABA from MFB (MFB를 이용한 PABA One-Pot 합성법)

  • Kim, Kyung-Duck;Ryu, Young;Kim, Seok-Chan
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.337-339
    • /
    • 2014
  • A facile one-pot synthesis of p-aminobenzoic acid from methyl 4-formylbenzoate which is a main by product in dimethyl terephthalate production process has been developed. This process involves the formation of amide intermediate obtained from the reaction of an aldehyde in methyl 4-formylbenzoate with chlorine in methylene chloride and the subsequent treatment of acid chloride with ammonia. The resulting amide was converted into amine using Hofmann degradation to afford a p-aminobenzoic acid. This facile one-pot process does not involve any expensive materials and should offer an attractive alternative to p-aminobenzoic acid production.

Synthesis and Crystal Structure of Cobalt(III) Complex with Chiral Pentadentate Bis-Amide Ligand, 1,9-bis(S)-pyrrolidinyl-2,5,8-triazanonane-1,9-dione$(S,S-prodienH_2)$

  • 이배욱;오창언;도명기
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.457-462
    • /
    • 1998
  • A chiral pentadentate bis-amide ligand, 1,9-bis(S)-pyrrolidinyl-2,5,8-triazanonane-1,9-dio ne$(S,S-prodienH_2)$ has been synthesized from the reaction of bis(2-aminoethyl)amine(dien) and S-proline, and the structure of $[Co(S,S-prodien)H_2O]ClO_4$ has be en determined by single crystal X-ray diffraction. The geometrical structure of the Co(III) complex has been an αβ -form, where the dien moiety of ligand chelates to a facial in metal center, and the aqua ligand coordinates a cis site to the secondary nitrogen of dien. The Co-N(1), Co-N(3) distances of two amide moiety in S,S-prodien are shorter than the other Co-N(2), Co-N(4), and Co-N(5) distances because of the increased basicity of nitrogen in amide. The complex crystallizes in the monoclinic space group $P2_1$(#4), with a=7.838(1), b=12.675(1), c=9.710(1) Å, β=100.39(1) and z=2. Refinement gives the final R and $R_w$ values of 0.045 and 0.057, respectively for 2130 observed reflections. Based upon the CD and X-ray data, it is identified that the absolute configuration of the αβ -$[Co(S,S-prodien)H_2O]ClO_4$ has a Λ-form.

Liquid Chromatographic Resolution of Racemic $\alpha$-Amino Acid Derivatives on an Improved $\pi$-Acidic Chiral Stationary Phase Derived from (S)-Leucine

  • 현명호;이승준;류재정
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1105-1109
    • /
    • 1998
  • A chiral stationary phase derived from (S)-N-(3,5-dinitrobenzoyl)leucine N-phenyl N-alkyl amide (CSP 2) was applied in separating the two enantiomers of various π-basic aromatic derivatives of leucine N-propyl amide in order to evaluate π-basic aromatic groups as an effective derivatizing group for the resolution of a-amino acids. Subsequently N-(3,5-dimethoxybenzoyl) group was found to be very effective as a π-basic aromatic derivatizing group. Based on these results, N-(3,5-dimethoxybenzoyl) derivatives of various a-amino N-propyl amides, N,N-diethyl amides and esters were resolved on the CSP derived from (S)-N-(3,5-dinitrobenzoyl) leucine N-phenyl N-alkyl amide (CSP 2) and the resolution results were compared with those on the CSP derived from (S)-N-(3,5-dinitrobenzoyl)leucine N-alkyl amide (CSP 1). The enantioselectivities exerted by CSP 2 were much greater than those exerted by CSP 1. In addition, racemic N-(3,5-dimethoxybenzoyl)-a-mino N,Ndiethyl amides were resolved much better than the corresponding N-(3,5-dimethoxybenzoyl)-a-mino N-propyl amides and esters on both CSPs. Based on these results, a chiral recognition mechanism utilizing the π-π donor-acceptor interaction and the two hydrogen bondings between the CSP and the analyte was proposed.

Photo-Assisted Sondegradation of Hydrogels in the Presence of TiO2 Nanoparticles

  • Ebrahimi, Rajabali;Tarhandeh, Giti;Rafiey, Saeed;Narjabadi, Mahsa;Khani, Hamed
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.92-101
    • /
    • 2012
  • The degradation of one of the commercially important hydrogel based on acrylic acid and acryl amide, (acrylic acid-co-acryl amide) hydrogels, by means of ultrasound irradiation and its combination with heterogeneous ($TiO_2$) was investigated. 24 kHz of ultrasound irradiation was provided by a sonicator, while an ultraviolet source of 16 W was used for UV irradiation. The extent of sonolytic degradation increased with increasing ultrasound power (in the range 30-80 W). $TiO_2$ sonophotocatalysis led to complete (acrylic acid-co-acryl amide) hydrogels degradation with increasing catalyst loading, while, the presence of $TiO_2$ in the dark generally had little effect on degradation. Therefore, emphasis was totally on the sonolytic and sonophotocatalytic degradation of hydrogels and a synergy effect was calculated for combined degradation procedures (Ultrasound and Ultraviolet) in the presence of $TiO_2$ nanoparticles. $TiO_2$ sonophotocatalysis was always faster than the respective individual processes due to the enhanced formation of reactive radicals as well as the possible ultrasound-induced increase of the active surface area of the catalyst. A kinetics model based on viscosity data was used for estimation of degradation rate constants at different conditions and a negative order for the dependence of the reaction rate on total molar concentration of (acrylic acid-co-acryl amide) hydrogels solution within the degradation process was suggested.

Polyaramide-Imide from N-Phenylphthalimide-Containing Diamine and Dicarboxylic Acid I. Synthesis and Thermal Properties (N-Phenylphthalimide를 포함하는 디아민과 디카르복시산으로 제조된 폴리아라미드-이미드 I. 제조와 열적 성질)

  • Kil, Deog-Soo;Bae, Jang-Soon;Choi, Sung-Jae;Gong, Myoung-Seon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.138-142
    • /
    • 1999
  • Imide-containing diamine and dicarboxylic acid monomers, N-(4-aminophenyl)-4-aminophthalimide(APAP), N-(4-carboxyphenyl)-4-carboxyphthalimide(CPCP), N,N'-oxydiphenylenebis(4-aminophthalimide)(ODPAP) and N,N'-oxydiphenylenebis(4-carboxyphthalimide)(ODPCP) were prepared. Poly(amide-imide)s were prepared by condensation reaction of the diamine and the dicarboxylic acid monomers. Poly(amide-imide)s were also prepared from the diamine monomers and aromatic acid chlorodes such as terephthaloyl chloride and isophthaloyl chloride. The polymers possess inherent viscosity of 0.18~0.67 dL/g and brittle films were cast from NMP/LiCl solution. The poly(amide-imide)s are easily soluble in NMP/LiCl and also partially soluble in polar aprotic solvents such as DMF, DMSO, NMP and DMAc even at $80^{\circ}C$. DSC traces of polymers showed no glass transition temperature and melting temperature, and TGA traces showed a 10% weight loss at $500^{\circ}C$.

  • PDF

Atom Transfer Radical Polymerization of [Poly(ethylene glycol)methyl ether] Methacrylate Using an Amide-Based Initiator (아미드기를 가지는 개시제를 이용한 [Poly(ethylene glycol)Methyl Ether] Methacrylate의 원자 이동 라디칼 중합)

  • Lee, Hyo-Kyung;Lee, Sun-Gu;Paik, Hyun-Jong
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.550-554
    • /
    • 2007
  • Atom transfer radical polymerization (ATRP) has been widely used in bioconjugation as it is an efficient and facile method to prepare polymers with pre-designed structures. Quite often, bioconjugation with proteins employs primary amines in proteins as a functional group to attach an initiator. When 2-bromoisobutryl bromide, the most widely used precursor for ATRP initiator, is used, ${\alpha}-halo$ amide initiating groups are formed in the proteins, which are known to exhibit slow initiation behavior in the ATRP process. Here we studied the ATRP of [poly(ethylene glycol)methyl ether] methacrylate (PEGMA) using amide-based initiator. PEGMA differs for both the nature and size of the polymer side branches and shows good solubility in water and a property that made it an ideal candidate for biomaterials. While normal ATRP produced ill-defined p(PEGMA) with amide based initiators, the halogen exchange method and the external additional of deactivator effectively improved the control of ATRP of PEGMA.

Synthesis and Characterization of Thermoplastic Elastomer Poly(ether-b-amide) Containing Aromatic Moiety (방향족 구조가 포함된 열가소성 탄성체 Poly(ether-b-amide)의 합성 및 특성)

  • Lee, Ji Hun;Kim, Hyung Joong
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.596-601
    • /
    • 2014
  • Polyamide (PA) oligomers, which are the hard segment of poly(ether-block-amide) (PEBA), presenting thermoplastic and high performance elastomeric properties were prepared by polycondensation between 4-aminobenzoic acid and 12-aminododecanoic acid. Subsequently PEBAs were obtained by addition polymerization of the PA oligomers and various molecular weights of poly(tetramethylene glycol) (PTMG). The structure of the final PEBA was identified by using FTIR and $^1H$ NMR and the thermal properties depending on changes in the structure of hard segment were collected by using DSC and UTM analysis. As the results, the melt temperature ($T_m$), the initial modulus, and the maximum strength of PEBAs increased with an increase in aromatic moiety up to 30% without reducing crystallinity.

Quantum Chemical Calculations on the Conformational Structure of the Alanine Oligomer Model (알라닌 올리고머의 배좌구조에 관한 양자화학적 계산)

  • Sim, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1563-1570
    • /
    • 2015
  • Conformational change during chain propagation of alanine oligomer was investigated by quantum chemical calculation(QCC) using 2~5mers(${\times}=2{\sim}5$) models. For estimation of the end group effects, two types of end group. "amide type" ($CH_3CONH-and-CONHCH_3$) and "methyl type" ($CH_3CONH-and-CONHCH_3$), were prepared as both ends(N-and-C). Conformers optimized for 5-mer converged to three types of ${\Phi}/{\Psi}$ : ${\alpha}$-helix(g+/g+, or g-/g-), PPII-like(extended helix-like, g+/g-, or g-/g+), and ${\beta}$-extended (t+/t-, or t-/t+), in the order of lower energy, and the energies of left- and right- handed conformers were the same (5-mer. amide type ${\Delta}E=-1.05$, right type ${\Delta}E=-1.62$). Energies of the monomer unit(${\Delta}E$) of ${\alpha}$-helix decreased with increases of monomer.