Browse > Article

Atom Transfer Radical Polymerization of [Poly(ethylene glycol)methyl ether] Methacrylate Using an Amide-Based Initiator  

Lee, Hyo-Kyung (Department of Polymer Science & Engineering, Pusan National University)
Lee, Sun-Gu (Department of Chemical Engineering, Pusan National University)
Paik, Hyun-Jong (Department of Polymer Science & Engineering, Pusan National University)
Publication Information
Polymer(Korea) / v.31, no.6, 2007 , pp. 550-554 More about this Journal
Abstract
Atom transfer radical polymerization (ATRP) has been widely used in bioconjugation as it is an efficient and facile method to prepare polymers with pre-designed structures. Quite often, bioconjugation with proteins employs primary amines in proteins as a functional group to attach an initiator. When 2-bromoisobutryl bromide, the most widely used precursor for ATRP initiator, is used, ${\alpha}-halo$ amide initiating groups are formed in the proteins, which are known to exhibit slow initiation behavior in the ATRP process. Here we studied the ATRP of [poly(ethylene glycol)methyl ether] methacrylate (PEGMA) using amide-based initiator. PEGMA differs for both the nature and size of the polymer side branches and shows good solubility in water and a property that made it an ideal candidate for biomaterials. While normal ATRP produced ill-defined p(PEGMA) with amide based initiators, the halogen exchange method and the external additional of deactivator effectively improved the control of ATRP of PEGMA.
Keywords
ATRP; amide functionalized initiator; PEGMA; halogen exchange reaction;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 K. R. Park, S. G. An, and C. G. Cho, Polymer(Korea), 27, 17 (2003)
2 A. Limer and D. M. Haddleton, Macromolecules, 39, 1353 (2006)   DOI   ScienceOn
3 L. Bes, S. Angot, and A. Limer, Macromolecules, 36, 2493 (2003)   DOI   ScienceOn
4 M. M. Ali and H. D. H. Stoever, Macromolecules, 37, 5219 (2004)   DOI   ScienceOn
5 Y. Kotani, M. Kamigaito, and M. Sawamoto, Macromolecules, 32, 2420 (1999)
6 M. Kamigaito, T. Ando, and M. Sawamoto, Chem. Rev., 101, 3689 (2001)   DOI   ScienceOn
7 D. M. Haddleton, R. Edmonds, and A. M. Heming, New J. Chem., 23, 477 (1999)
8 H. Takahashi, T. Ando, and M. Kamigaito, Macromolecules, 32, 3820 (1999)
9 N. Ayres, D. M. Hadclleton, and A. J. Shooter, Macromolecules, 35, 3849 (2002)   DOI   ScienceOn
10 M. Senoo, Y. Kotani, and M. Kamigaito, Macromolecules, 32, 8005 (1999)
11 K. Matyiaszewski, D. A. Shipp, and J. L. Wang, Macromolecules, 31, 6836 (1998)
12 K. Matyjaszewski, S. M. Jo, and H. J. Paik, Macromolecules, 32, 6431 (1999)
13 J. Xia and K. Matyjaszewski, Macromolecules, 30, 7692 (1997)
14 S. J. Holder, N. A. A. Rossi, and C. T. Yeoh, J. Mater. Chem., 13, 2771 (2003)   DOI   ScienceOn
15 N. V. Tsarevsky, T. Pintauer, and K. Matyiaszewski, Macromolecules, 37, 9768 (2004)   DOI   ScienceOn
16 C. Granel, P. Dubois, and R. Jerome, Macromolecules, 29, 8576 (1996)
17 K. Matyjaszewski, T. E. Patten, and J. Xia, J. Am. Chem. Soc., 119, 674 (1997)
18 K. Matyjaszewski and J. Xia, Chem. Rev., 101, 2921 (2001)   DOI   ScienceOn