• Title/Summary/Keyword: ambient pressure operation

Search Result 36, Processing Time 0.027 seconds

Thrust modulation performance analysis of pintle-nozzle motor (핀틀 노즐형 로켓 모타의 추력 조절 성능에 관한 연구)

  • Kim, Joung-Keun;Park, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.392-398
    • /
    • 2009
  • Theoretical thrust equations for the diverse nozzle expansion condition were derived. By using the obtained thrust equations, parametric studies were carried out to estimate the effect of pressure exponent, minimum operation pressure, ambient pressure and extinguishment pressure on thrust modulation performance in pintle-nozzle solid rocket motors. Analysis results showed that thrust turndown ratio can be easily attained by small nozzle-throat area variation at high pressure exponent, low minimum operation pressure, high ambient pressure and high extinguishment pressure condition. At those conditions, the highest chamber pressure to obtain the intended thrust turndown ratio can be minimized.

Selection of Number of Fans in an Air-Cooled Condenser of a 150 MW Thermal Power Plant according to Ambient Air Temperature (대기온도 변화에 따른 150 MW 화력발전소용 공랭식 복수기 송풍기수 선정)

  • Hwang, Yong-Hoon;Heo, Ki-Moo;Yoon, Sung-Hoon;Moon, Yoon-Jae;Lee, Jae-Heon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.10 no.4
    • /
    • pp.24-28
    • /
    • 2014
  • During this study, number of fan by ambient air temperature that condenser pressure satisfies steam turbine exhaust pressure condition with intervals of $3^{\circ}C$ within the 150 MW thermal power plant site temperature range of $-17.1^{\circ}C$ to $36.7^{\circ}C$ was reviewed. An air cooled condenser changes its operating pressure influenced by cooling air circulation amount by atmospheric temperature and number of fan. For stable power plant operation, these were confirmed to maximize a quantity of air-cooled condenser fans at above or equal from design ambient temperature and to reduce an amount of circulating air to an air cooled condenser by depending on a quantity of fan considering exhaust pressure operation condition of a steam turbine at below design ambient temperature.

  • PDF

LPG Spray Characteristics in a Multi-hole Injector for Gasoline Direct Injection (분사조건에 따른 가솔린 직접분사용 다공 분사기에서의 LPG 분무특성)

  • Jung, Jinyoung;Oh, Heechang;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Liquefied petroleum gas (LPG) is regarded as an alternative fuel for spark ignition engine due to similar or even higher octane number. In addition, LPG has better fuel characteristics including high vaporization characteristic and low carbon/hydrogen ratio leading to a reduction in carbon dioxide emission. Recently, development of LPG direct injection system started to improve performance of vehicles fuelled with LPG. However, spray characteristics of LPG were not well understood, which is should be known to develop injector for LPG direct injection engines. In this study, effects of operation condition including ambient pressure, temperature, and injection pressure on spray properties of n-butane were evaluated and compared to gasoline in a multi-hole injector. As general characteristics of both fuels, spray penetration becomes smaller with an increase of ambient pressure as well as a reduction in the injection pressure. However, it is found that evaporation of n-butane was faster compared to gasoline under all experimental condition. As a result, spray penetration of n-butane was shorter than that of gasoline. This result was due to higher vapor pressure and lower boiling point of n-butane. On the other hand, spray angle of both fuels do not vary much except under high ambient temperature conditions. Furthermore, spray shape of n-butane spray becomes completely different from that of gasoline at high ambient temperature conditions due to flash boiling of n-butane.

Process Diagnosis of Reactive Deposition of MgO by ICP Sputtering System (유도결합 플라즈마 스퍼터링 장치에서 MgO의 반응성 증착 시 공정 진단)

  • Joo, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.5
    • /
    • pp.206-211
    • /
    • 2012
  • Process analysis was carried out during deposition of MgO by inductively coupled plasma assisted reactive magnetron sputtering in Ar and $O_2$ ambient. At the initiation of Mg sputtering with bipolar pulsed dc power in Ar ambient, total pressure showed sharp increase and then slow fall. To analyse partial pressure change, QMS was used in downstream region, where the total pressure was maintained as low as $10^{-5}$ Torr during plasma processing, good for ion source and quadrupole operation. At base pressure, the major impurity was $H_2O$ and the second major impurity was $CO/N_2$ about 10%. During sputtering of Mg in Ar, $H_2$ soared up to 10.7% of Ar and remained as the major impurity during all the later process time. When $O_2$ was mixed with Ar, the partial pressure of Ar decreased in proportion to $O_2$ flow rate and that of $H_2$ dropped down to 2%. It was understood as Mg target surface was oxidized to stop $H_2$ emission by Ar ion sputtering. With ICP turned on, the major impurity $H_2$ was converted into $H_2O$ consuming $O_2$ and C was also oxidized to evolve CO and $CO_2$.

Broadband Piezoelectric Energy Harvesting Technology (광대역 압전 에너지 하베스팅 기술)

  • Lee, Dong-Gyu;Yee, Yeon-Jeong;Song, Hyun-Cheol
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.56-69
    • /
    • 2019
  • Recent advances in low-power sensors and transmitters are driving the search for standalone power sources that utilize unused ambient energy. These energy harvesters can alleviate the issues related to the installation and maintenance of sensors. Particularly piezoelectric energy harvesters, with the ability to convert ambient mechanical energy into useful electricity, have received significant attention due to their high energy density, low cost and operational stability over wide temperature and pressure conditions. In order to maximize the generated electrical power, the natural frequency of the piezoelectric energy harvester should be matched with the dominant frequency of ambient vibrations. However, piezoelectric energy harvesters typically exhibit a narrow bandwidth, thus, it becomes difficult to operate near resonance under broadband ambient vibration conditions. Therefore, the resonating of energy harvesters is critical to generate maximum output power under ambient vibration conditions. For this, energy harvesters should have broadband natural frequency or actively tunable natural frequency with ambient vibrations. Here, we review the most plausible broadband energy harvesting techniques of the multi-resonance, nonlinearity, and self-resonance tuning. The operation mechanisms and recent representative studies of each technique are introduced and the advantages and disadvantages of each method are discussed. In addition, we look into the future research direction for the broadband energy harvester.

A Structural Analysis of the KSTAR Cryostat (KSTAR 저온진공용기 구조해석)

  • 허남일;김형섭;조승연;임기학;KSTAR설계팀
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.185-188
    • /
    • 1999
  • KSTAR cryostat is a large vacuum vessel that provides the necessary thermal barrier between the ambient temperature test cell and the liquid helium cooled magnets. In this work, the structural analyses for the cryostat under the normal operation condition were performed. As a result, it turns out that the vessel would be safe when it is exposed to normal operation loads, such as system weight, vacuum pressure, and plasma vertical disruption load. And, the preliminary result on the modal analysis is presented.

  • PDF

Efficient Method of fixing the Setting(4M standardization) in Melting furnace Operation (용해로 운전에서 Setting고정(4M 표준화)의 효율적 방안)

  • Jang, Do-Soo;Lee, Sae-Jae;Suh, Jung-Yul;Kim, I-Nam;Chung, Chong-Won;Cho, Jin-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.1
    • /
    • pp.96-104
    • /
    • 2007
  • Glass melting process is influenced by both control and observation factors, where control factors include quantity and mixing ratio of raw material, the amount of fuel and air in-take. Further observation factors include temperature and pressure at each step of process inside glass melting furnace. Ambient Control is an effective means to eliminate complications from excessive variation among raw materials, or external disturbance from wide fluctuation of environment around equipments. Ambient Control uses both control and observation factors mentioned above. This study suggests an effective Proactive Control System that can enable genuine 4M standardization in glass melting furnace by applying Ambient Control.

Solid Circulation Characteristics of Oxygen Carrier for Chemical Looping Combustion System at Ambient Temperature and Pressure (케미컬루핑 연소시스템을 위한 산소전달입자의 상온-상압 고체순환특성)

  • YOON, JOOYOUNG;KIM, HANA;KIM, JUNGHWAN;LEE, DOYEON;BAEK, JEOM-IN;RYU, HO-JUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.384-391
    • /
    • 2017
  • Effects of operating variables on solid circulation rate were measured and discussed using two-interconnected circulating fluidized bed system at ambient temperature and pressure. OCN 706-1100 particles were used as oxygen carrier. The measured solid circulation rates increased as the lower loop seal gas flow rates and the solid height in the fuel reactor increased. Suitable operating conditions to avoid choking of the air reactor were confirmed. Continuous long-term operations of steady-state solid circulation were also demonstrated at two different conditions based on the operating window.

Bench-scale Test of Sulfuric Acid Decomposition Process in SI Thermochemical Cycle at Ambient Pressure (SI 열화학싸이클 황산분해공정의 Bench-scale 상압 실험)

  • Jeon, Dong-Keun;Lee, Ki-Yong;Kim, Hong-Gon;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.139-151
    • /
    • 2011
  • The sulfur-iodine (SI) thermochemical water splitting cycle is one of promising hydrogen production methods from water using high-temperature heat generated from a high temperature gas-cooled nuclear reactor (HTGR). The SI cycle consists of three main units, such as Bunsen reaction, HI decomposition, and $H_2SO_4$ decomposition. The feasibility of continuous operation of a series of subunits for $H_2SO_4$ decomposition was investigated with a bench-scale facility working at ambient pressure. It showed stable and reproducible $H_2SO_4$ decomposition by steadily producing $SO_2$ and $O_2$ corresponding to a capacity of 1 mol/h $H_2$ for 24 hrs.

Analysis of Part Load Performance of a Hybrid PEMFC System (하이브리드형 고분자전해질 연료전지 시스템의 부분부하 성능해석)

  • Ji, Seung-Won;You, Byung-June;Kim, Tong-Seop;Sohn, Jeong-Lak;Lee, Young-Duk;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.849-855
    • /
    • 2008
  • The paper addresses modeling and analysis of the part load performance of a hybrid fuel cell system integrating a polymer electrolyte membrane fuel cell(PEMFC) and a gas turbine(GT). The system is a pressurized one where the working pressure of the PEMFC is higher than the ambient pressure. In addition to the two major components, the system also includes auxiliary parts such as a steam reformer, a humidifier, and afterburner and so on. Based on design analysis, component off-design models are incorporated in the analysis program and part load operation is simulated. The mode for the part load operation of the PEMFC/GT hybrid system is a variable rotational speed operation. The operating characteristics and variations in the system efficiency and component performance parameters at part load are analyzed.