• Title/Summary/Keyword: ambient $CO_2$

Search Result 452, Processing Time 0.024 seconds

Ambient Levels of CO and PM10 at Low- and High-floor Apartments in Industrial Complexes (산업단지 내 저층과 고층 아파트의 외기 중 호흡성분진과 일산화탄소 수준)

  • Jo, Wan-Kuen;Lee, Joon-Yeob
    • Journal of Environmental Science International
    • /
    • v.15 no.8
    • /
    • pp.719-725
    • /
    • 2006
  • Since low-floor apartments ate vertically closer to patting lots and roadways, it is hypothesized that residents in low-floor apartments may be exposed to elevated ambient levels of motet vehicle emissions compared to residents in high-floor apartments. The present study examined this hypothesis by measuring two motor vehicle source-related pollutants(CO and PM10) in ambient air of high-rise apartment buildings within the boundary of industrial complexes according to atmospheric stability The ambient air concentrations of CO and PM10 were higher for low-floor apartments than for high-floor apartments, regardless of atmospheric stability, The median concentration ratio of the low-floor air to high-floor alt ranged from 1.3 to 2.0, depending upon atmospheric stabilities, seasons and compounds. Moreover, the CO and PM10 concentrations were significantly higher in the winter and in the summer, regardless of the Hoot height. Atmospheric stability also was suggested to be important for the residents' exposure of high-rise apartment buildings to both CO and PM10. The median ratios of surface inversion air to non-surface inversion air ranged from 1.2 to 1.7 and from 1.0 to 1.6 lot PM10 and CO, respectively, depending upon seasons. Conclusively, these parameters(apartment floor height, season, and atmospheric stability) should be considered when evaluating the exposure of residents, living in high-rise apartment buildings, to CO and PM10. Meanwhile, the median PMl0 outdoor concentrations were close to or higher than the Korean annual standards for PM10, and the maximum PM10 concentrations substantially exceeded the Korean PM10 standard, thus suggesting the need for a management strategy for ambient PM 10. Neither the median nor the maximum outdoor CO concentrations, however, were higher than the Korean CO standard.

Interactions of nitrogen supplying level and elevated CO2 on Growth and Photosynthesis of Picea koraiensis Nakai seedlings

  • Wang Y.J.;Mao Z.J.;Park K.W.
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2004.11a
    • /
    • pp.139-143
    • /
    • 2004
  • To evaluate the biological and physiological response of Picea koraiensis Nakai to elevated $CO_2$ and nitrogen.3-year old seedlings were planted in an ambient and 700 ppm $CO_2$ at low (2mM $NH_4NO_3$) or high nitrogen (16mM $NH_4NO_3$) supplying treatments for 3 months. Photosynthetic parameters were measured monthly. Seedlings were harvested at monthly intervals and growth parameters of root system, stem and needle fractions were evaluated. The result showed that height of the seedlings grown at both of elevated $CO_2Xhigh$ nitrogen and elevated CO2×low nitrogen supplying treatments increased significantly more than that of at ambient CO2 treatments. Seedlings grown at elevated $CO_2Xhigh$ nitrogen produced more root biomass than at elevated $CO_2Xlow$ nitrogen and ambient $CO_2Xhigh$ nitrogen treatments. This result suggested that the root growth response of Picea koraiensis seedlings was greater in elevated $CO_2{\times}high$ nitrogen regime, which is very important for carbon sequestration in soil. $A_{max}$ of the seedlings grown at elevated $CO_2Xhigh$ nitrogen increased during the three months significantly, and $A_{max}$ of the seedlings grown at the other three treatments decreased significantly, suggesting that the interaction between elevated $CO_2$ and high nitrogen supplying stimulates the $A_{max}$ of Picea koraiensis. $A_{max}$ of the seedlings grown at elevated $CO_2Xlow$ nitrogen showed higher than other three treatments in the first month of the experiment, but decreased in succedent two months, suggesting that elevated $CO_2$ promotes the photosynthesis of the seedlings. However long term growth in elevated $CO_2Xlow$ nitrogen supplying condition resulted in an acclimatory decreased in leaf photosynthesis.

  • PDF

The Influence of the Mg-doped p-GaN Layer Activated in the O2 Ambient on the Current-Voltage Characteristics of the GaN-Based Green LEDs (O2 분위기에서 p-GaN 층의 Mg 활성화가 GaN계 녹색 발광소자에 미치는 전류-전압특성)

  • 윤창주;배성준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.441-448
    • /
    • 2002
  • The electrical properties of the GaN-based green light emitting diodes(LEDs) with the Mg-doped p-GaN layer activated in $N_2$ or $O_2$ ambient have been compared. For the $N_2$ -ambient activation the current-voltage behavior of LEDs has been found to be improved when the Mg dopants activation was performed in the higher temperature. However, for the $O_2$-ambient activation the current-voltage characteristic has been observed to be enhanced when the Mg dopants activation was carried out in the lower temperature. The minimum forward voltage at 20mA was obtained to be 4.8 V for LEDs with the p-GaN layer activated at $900^{\circ}C$ in the $N_2$ ambient and 4.5V for LEDs with the p-GaN layer treated at $700^{\circ}C$ in the $O_2$ambient, repectively. The forward voltage reduction of the LEDs treated in the $O_2$-ambient may be related to the oxygen co-doping of the p-GaN layer during the activation process. The $O_2$ -ambient activation process is useful for the enhancement of the LED performance as well as the fabrication process since this process can activate the Mg dopants in the low temperature.

Analysis of Output Voltage Properties of Non-dispersive Infrared Gas Sensors According to Ambient Temperatures (주변 온도 영향에 따른 비분산 적외선 가스센서의 출력 특성 해석)

  • Park, Han-Gil;Yi, Seung-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.294-299
    • /
    • 2018
  • This article describes the output properties of non-dispersive infrared carbon dioxide($CO_2$) sensors resulting from the changes in ambient temperatures. After the developed sensor module was installed inside the gas chamber, the temperature was set to 267 K, 277 K, 300 K, and 314 K, and the concentrations of $CO_2$ gas were increased from 0 to 5,000 ppm. Then, the output voltage at each concentration was obtained. Through these experimental results, two observations were made. First, both the $CO_2$ sensor and the reference sensor showed an increase in the output voltages as the temperature rose from 0 ppm, Second, the full scale outputs of the $CO_2$ sensor grew as the temperature increased. The output characteristics were analyzed based on two factors: change in the radiant energy of the infrared light source and change in the absorptivity of $CO_2$ gas according to the ambient temperature. Additionally, temperature compensation methods were discussed.

Effects of Elevated $CO_2$ and Temperature on Competition between Rice and Echinochloa glabrescens Seedlings

  • Kim, Han-Yong
    • Plant Resources
    • /
    • v.1 no.1
    • /
    • pp.43-48
    • /
    • 1998
  • The objective of this study was to determine how elevated $CO_2$ and temperature affected early growth and competition between direct seeded rice (Oryza sativa) and a common paddy weed (Echinochloa glabrascens). By using temperature gradient chambers. Rice and E. glabrescens were grown for 5 weeks at ratios of 1:0. 3:1 and 0:1 at three temperatures ($16.4^{\circ}C,\;19.8^{\circ}C,\;and\;22.2^{\circ}C$) and either in ambient (361ppm) or elevated (566ppm) $CO_2$. For both species. elevated $CO_2$ had no effect on mainstem leaf number while air temperature had a slight positive effect which was greater in E. glabrescens than rice. With elevated $CO_2$ rice leaf area index and plant height increased alightly in all species combinations but no increases were observed for E. Glabuescens. For rice in all combinations. elevated $CO_2$ tended to increase the rot and total biomass much more than any other growth parameters: the increases in root and total biomass resulting from elevated $CO_2$ ranged from 16% to 40%. depending on air temperature. At the lowest temperature, the decrease in rice biomass in combination with E. glabrescens was significantly greater at elevated $CO_2$ (18%) than ambient $CO_2$ (3%). At the highest temperature, however, the decrease in rice biomass at elevated $CO_2$ (22%) was less than that at ambient $CO_2$ (36%). The competitive ability of rice as measured by the decrease in biomass when grown in combination with E. glabrescens depended strongly on root growth and/or allocation. These results suggest that at higher temperatures elevated $CO_2$ could enhance the competitive ability of direct seeded rice during early growth. However, at lower temperatures. the competitive ability of E. glabrescens seems to be greater.

  • PDF

Combined Effect of CO2 andTemperature on Wheat Powdery Mildew Development

  • Matic, Slavica;Cucu, Maria Alexandra;Garibaldi, Angelo;Gullino, Maria Lodovica
    • The Plant Pathology Journal
    • /
    • v.34 no.4
    • /
    • pp.316-326
    • /
    • 2018
  • The effect of simulated climate changes by applying different temperatures and $CO_2$ levels was investigated in the Blumeria graminis f. sp. tritici/wheat pathosystem. Healthy and inoculated plants were exposed in single phytotrons to six $CO_2$+temperature combinations: (1) 450 ppm $CO_2/18-22^{\circ}C$ (ambient $CO_2$ and low temperature), (2) 850 ppm $CO_2/18-22^{\circ}C$ (elevated $CO_2$ and low temperature), (3) 450 ppm $CO_2/22-26^{\circ}C$ (ambient $CO_2$ and medium temperature), (4) 850 ppm $CO_2/22-26^{\circ}C$ (elevated $CO_2$ and medium temperature), (5) 450 ppm $CO_2/26-30^{\circ}C$ (ambient $CO_2$ and high temperature), and (6) 850 ppm $CO_2/26-30^{\circ}C$ (elevated $CO_2$ and high temperature). Powdery mildew disease index, fungal DNA quantity, plant death incidence, plant expression of pathogenesis-related (PR) genes, plant growth parameters, carbohydrate and chlorophyll content were evaluated. Both $CO_2$ and temperature, and their interaction significantly influenced powdery mildew development. The most advantageous conditions for the progress of powdery mildew on wheat were low temperature and ambient $CO_2$. High temperatures inhibited pathogen growth independent of $CO_2$ conditions, and no typical powdery mildew symptoms were observed. Elevated $CO_2$ did not stimulate powdery mildew development, but was detrimental for plant vitality. Similar abundance of three PR transcripts was found, and the level of their expression was different between six phytotron conditions. Real time PCR quantification of Bgt was in line with the disease index results, but this technique succeeded to detect the pathogen also in asymptomatic plants. Overall, future global warming scenarios may limit the development of powdery mildew on wheat in Mediterranean area, unless the pathogen will adapt to higher temperatures.

Optimum Design of Middle-Sized CO2 Water Heater (중형 이산화탄소 급탕기의 최적 설계)

  • Park, Hanvit;Yun, Rin;Kim, Young Deug
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.4
    • /
    • pp.173-179
    • /
    • 2013
  • Middle-sized $CO_2$ water heater having compressor power of 7.45 kW was designed, and its performances were experimentally tested. Besides, optimum design of the $CO_2$ water heater was conducted by cycle simulation. When ambient temperature of $7^{\circ}C$ and hot water outlet temperature of $80^{\circ}C$ the $CO_2$ water heater showed the COP of 3.2. As hot water temperature increased the COP is getting decreased due to significant increase of compressor power consumption compared to increasing rate of heating capacity. When ambient temperature increased from $-3^{\circ}C$ to $12^{\circ}C$ the COP increased by 30%. The optimum components design of a gas cooler, an internal heat exchanger, and an evaporator were conducted, and the experimental correlation between amount of EEV opening and ambient temperature, and hot water temperature was suggested.

Effects of Enhanced pCO2 and Temperature on Reproduction and Survival of the Copepod Calanus sinicus

  • Kang, Hyung-Ku;Lee, Chang-Rae;Kim, Dongseon;Yoo, Sinjae
    • Ocean and Polar Research
    • /
    • v.38 no.4
    • /
    • pp.303-314
    • /
    • 2016
  • We tested the combined effects of increased partial pressure of $CO_2$ ($pCO_2$) and temperature on the reproduction and survival of the copepod Calanus sinicus from Asan Bay, the Yellow Sea under laboratory conditions to understand the impact of acidification on copepods. Egg production rate, survival rate, and fecal pellet production of C. sinicus were not affected by 1305 ppm $pCO_2$ or with combined treatments of temperature and $pCO_2$, including $8^{\circ}C$ and 289 ppm $pCO_2$ (ambient), $8^{\circ}C$ and 753 ppm $pCO_2$ (high $pCO_2$), $12^{\circ}C$ and 289 ppm $pCO_2$ (high temperature), and $12^{\circ}C$ and 753 ppm $pCO_2$ (greenhouse), for 5 or 10 d of exposure. However, egg hatching success of C. sinicus decreased significantly in the greenhouse treatment compared with the ambient or the high $pCO_2$ treatments. These results suggest that a combined treatment ($pCO_2$ and temperature) affected egg viability more than a single treatment($pCO_2$).

Plant Architecture and Flag Leaf Morphology of Rice Crops Exposed to Experimental Warming with Elevated CO2

  • Vu, Thang;Kim, Han-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.3
    • /
    • pp.255-263
    • /
    • 2011
  • Projected increases in atmospheric $CO_2$ concentration ([$CO_2$]) and temperature ($T_a$) have the potential to alter in rice growth and yield. However, little is known about whether $T_a$ warming with elevated [$CO_2$] modify plant architecture. To better understand the vertical profiles of leaf area index (LAI) and the flag leaf morphology of rice grown under elevated $T_a$ and [$CO_2$], we conducted a temperature gradient field chamber (TGC) experiment at Gwangju, Korea. Rice (Oryza sativa L. cv. Dongjin1ho) was grown at two [$CO_2$] [386 (ambient) vs 592 ppmV (elevated)] and three $T_a$ regimes [26.8 ($\approx$ambient), 28.1 and $29.8^{\circ}C$] in six independent field TGCs. While elevated $T_a$ did not alter total LAI, elevated [$CO_2$] tended to reduce (c. 6.6%) the LAI. At a given canopy layer, the LAI was affected neither by elevated [$CO_2$] nor by elevated $T_a$, allocating the largest LAI in the middle part of the canopy. However, the fraction of LAI distributed in a higher and in a lower layer was strongly affected by elevated $T_a$; on average, the LAI distributed in the 75-90 cm (and 45-60 cm) layer of total LAI was 9.4% (and 35.0%), 18.8% (25.9%) and 18.6% (29.2%) in ambient $T_a$, $1.3^{\circ}C$ and $3.0^{\circ}C$ above ambient $T_a$, respectively. Most of the parameters related to flag leaf morphology was negated with elevated [$CO_2$]; there were about 12%, 5%, 7.5%, 15% and 21% decreases in length (L), width (W), L:W ratio, area and mass of the flag leaf, respectively, at elevated [$CO_2$]. However, the negative effect of elevated [$CO_2$] was offset to some extent by $T_a$ warming. All modifications observed were directly or indirectly associated with either stimulated leaf expansion or crop phenology under $T_a$ warming with elevated [$CO_2$]. We conclude that plant architecture and flag leaf morphology of rice can be modified both by $T_a$ warming and elevated [$CO_2$] via altering crop phenology and the extent of leaf expansion.

Characteristics of Ni1/3Co1/3Mn1/3(OH)2 Powders Prepared by Co-Precipitation in Air and Nitrogen Atmospheres (공기와 질소 분위기에서 공침법으로 합성된 Ni1/3Co1/3Mn1/3(OH)2 분말의 특성 비교)

  • Choi, Woonghee;Park, Se-Ryen;Kang, Chan Hyoung
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.136-142
    • /
    • 2016
  • As precursors of cathode materials for lithium ion batteries, $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$ powders are prepared in a continuously stirred tank reactor via a co-precipitation reaction between aqueous metal sulfates and NaOH in the presence of $NH_4OH$ in air or nitrogen ambient. Calcination of the precursors with $Li_2CO_3$ for 8 h at $1,000^{\circ}C$ in air produces dense spherical cathode materials. The precursors and final powders are characterized by X-ray diffraction (XRD), scanning electron microscopy, particle size analysis, tap density measurement, and thermal gravimetric analysis. The precursor powders obtained in air or nitrogen ambient show XRD patterns identified as $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$. Regardless of the atmosphere, the final powders exhibit the XRD patterns of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ (NCM). The precursor powders obtained in air have larger particle size and lower tap density than those obtained in nitrogen ambient. NCM powders show similar tendencies in terms of particle size and tap density. Electrochemical characterization is performed after fabricating a coin cell using NCM as the cathode and Li metal as the anode. The NCM powders from the precursors obtained in air and those from the precursors obtained in nitrogen have similar initial charge/discharge capacities and cycle life. In conclusion, the powders co-precipitated in air can be utilized as precursor materials, replacing those synthesized in the presence of nitrogen injection, which is the usual industrial practice.