DOI QR코드

DOI QR Code

Effects of Enhanced pCO2 and Temperature on Reproduction and Survival of the Copepod Calanus sinicus

  • Kang, Hyung-Ku (Marine Life and Ecosystem Division, KIOST) ;
  • Lee, Chang-Rae (National Park Research Institute, Korea National Park Service) ;
  • Kim, Dongseon (Marine Environmental Analyses-Remediation Division, KIOST) ;
  • Yoo, Sinjae (Jeju International Marine Science Research and Logistics Center, KIOST)
  • Received : 2016.10.04
  • Accepted : 2016.12.06
  • Published : 2016.12.30

Abstract

We tested the combined effects of increased partial pressure of $CO_2$ ($pCO_2$) and temperature on the reproduction and survival of the copepod Calanus sinicus from Asan Bay, the Yellow Sea under laboratory conditions to understand the impact of acidification on copepods. Egg production rate, survival rate, and fecal pellet production of C. sinicus were not affected by 1305 ppm $pCO_2$ or with combined treatments of temperature and $pCO_2$, including $8^{\circ}C$ and 289 ppm $pCO_2$ (ambient), $8^{\circ}C$ and 753 ppm $pCO_2$ (high $pCO_2$), $12^{\circ}C$ and 289 ppm $pCO_2$ (high temperature), and $12^{\circ}C$ and 753 ppm $pCO_2$ (greenhouse), for 5 or 10 d of exposure. However, egg hatching success of C. sinicus decreased significantly in the greenhouse treatment compared with the ambient or the high $pCO_2$ treatments. These results suggest that a combined treatment ($pCO_2$ and temperature) affected egg viability more than a single treatment($pCO_2$).

Keywords

References

  1. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365-365 https://doi.org/10.1038/425365a
  2. Doney SC, Fabry V, Feely RA, Kleypas JA (2009) Ocean acidification: the other $CO_2$ problem. Annu Rev Mar Sci 1:169-192 https://doi.org/10.1146/annurev.marine.010908.163834
  3. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414-432 https://doi.org/10.1093/icesjms/fsn048
  4. Feely RA, Doney SC, Cooley SR (2009) Ocean acidification: present conditions and future changes in a high-$CO_2$ world. Oceanography 22(4):36-47 https://doi.org/10.5670/oceanog.2009.95
  5. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry V, Millero FJ (2004) Impact of anthropogenic $CO_2$ on the $CaO_3$ system in the oceans. Science 305:362-366 https://doi.org/10.1126/science.1097329
  6. Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive "acidifed" water onto the continental shelf. Science 320:1490-1492 https://doi.org/10.1126/science.1155676
  7. Feng Y, Hare CE, Leblanc K, Rose JM, Zhang Y, DiTullio GR, Lee PA, Wilhelm SW, Rowe JM, Sun J, Nemcek N, Gueguen C, Passow U, Benner I, Brown C, Hutchins DA (2009) Effects of increased $pCO_2$ and temperature on the North Atlantic spring bloom. I. the phytoplankton community and biogeochemical response. Mar Ecol-Prog Ser 388:13-25 https://doi.org/10.3354/meps08133
  8. Gaitan-Espitia JD, Hancock JR, Padilla-Gamino JL, Rivest EB, Blanchette CA, Reed DC, Hofmann GE (2014) Interactive effects of elevated temperature and $pCO_2$ on early-life-history stages of the giant kelp Macrocystis pyrifera. J Exp Mar Biol Ecol 457:51-58 https://doi.org/10.1016/j.jembe.2014.03.018
  9. Halsband C, Kurihara H (2013) Potential acidification impacts on zooplankton in CCS leakage scenarios. Mar Poll Bull 73:495-503 https://doi.org/10.1016/j.marpolbul.2013.03.013
  10. Hare CE, Leblanc K, DiTullio GR, Kudela RM, Zhang Y, Lee PA, Riseman S, Hutchins DA (2007) Consequences of increased temperature and $CO_2$ for phytoplankton community structure in the Bering Sea. Mar Ecol-Prog Ser 352:9-16 https://doi.org/10.3354/meps07182
  11. Huo Y, Wang S, Sun S, Li C, Liu M (2008) Feeding and egg production of the planktonic copepod Calanus sinicus in spring and sutumn in the Yellow Sea, China. J Plankton Res 30:723-734 https://doi.org/10.1093/plankt/fbn034
  12. Invidia M, Sei S, Gorbi G (2004) Survival of the copepod Acartia tonsa following egg exposure to near anoxia and to sulfide at different pH values. Mar Ecol-Prog Ser 276: 187-196 https://doi.org/10.3354/meps276187
  13. IPCC (2013) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge, 1535 p
  14. Isari S, Zervoudaki S, Peters J, Papantoniou G, Pelejero C, Saiz E (2016) Lack of evidence for elevated $CO_2$-induced bottom-up effects on marine copepods: a dinoflagellatecalanoid prey-predator pair. ICES J Mar Sci 73:650-658 https://doi.org/10.1093/icesjms/fsv078
  15. Jang MC, Shin K, Hyun B, Lee T, Choi KH (2013) Temperature-regulated egg production rate, and seasonal and interannual variations in Paracalanus parvus. J Plankton Res 35:1035-1045 https://doi.org/10.1093/plankt/fbt050
  16. Kang HK, Lee CR, Choi KH (2011) Egg production rate of the copepod Calanus sinicus off the Korean coast of the Yellow Sea during spring. Ocean Sci J 46:133-143 https://doi.org/10.1007/s12601-011-0012-0
  17. Kang HK, Poulet SA (2000) Reproductive success in Calanus helgolandicus as a function of diet and egg cannibalism. Mar Ecol-Prog Ser 201:241-250 https://doi.org/10.3354/meps201241
  18. Kang JH, Kim WS, Jeong HJ, Shin K, Chang M (2007) Why did the copepod Calanus sinicus increase during the 1990s in the Yellow Sea? Mar Environ Res 63:82-90 https://doi.org/10.1016/j.marenvres.2006.05.005
  19. Kawaguchi S, Kurihara H, King R, Hale L, Berli T, Robinson JP, Ishida A, Wakita M, Wirtue P, Nicol S, Ishimatsu A (2010) Will krill fare well under Southern Ocean acidification? Biol Lett. doi:10.1098/rsbl.2010.0777
  20. Kim D, Choi SH, Yang EJ, Kim KH, Jeong JH, Kim YO (2013a) Biologically mediated seasonality of Aragonite saturation states in Jinhae Bay, Korea. J Coast Res 29:1420-1426
  21. Kim TW, Parry JP, Micheli F (2013b) The effects of intermittent exposure to low-pH and low-oxygen conditions on survival and growth of juvenile red abalone. Biogeosciences 10:7255-7262 https://doi.org/10.5194/bg-10-7255-2013
  22. Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. In: Report of a workshop, Petersburg, 18-20 April 2005, 88 p
  23. Kurihara H (2008) Effects of $CO_2$-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol-Prog Ser 373:275-284 https://doi.org/10.3354/meps07802
  24. Kurihara H, Ishimatsu A (2008) Effects of high $CO_2$ seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Mar Poll Bull 56:1086-1090 https://doi.org/10.1016/j.marpolbul.2008.03.023
  25. Kurihara H, Shimode S, Shirayama Y (2004) Effects of raised $CO_2$ concentration on the egg production rate and early development of two marine copepods (Acartia steueri and Acartia erythraea). Mar Poll Bull 49:721-727 https://doi.org/10.1016/j.marpolbul.2004.05.005
  26. Langenbuch M, Bock C, Leibfritz D, Portner HO (2006) Effects of environmental hypercapnia on animal physiology: a $^{13}C$ NMR study of protein synthesis rates in the marine invertebrate Sipunculus nudus. Comp Biochem Physiol A 144:479-484 https://doi.org/10.1016/j.cbpa.2006.04.017
  27. Langenbuch M, Portner HO (2002) Changes in metabolic rate and N excretion in the marine invertebrate Sipunculus nudus under conditions of environmental hypercapnia: identifying effective acid-base variables. J Exp Biol 205:1153-1160
  28. Lee JA, Kim TW (2016) Effects of potential future $CO_2$ levels in seawater on emerging behavior and respiration of Manila clams, Venerupis philippinarum. ICES J Mar Sci. doi:10.1093/icesjms/fsw124
  29. Lewis CN, Brown KA, Edwards LA, Cooper G, Findlay HS (2013) Sensitivity to ocean acidification parallels natural $pCO_2$ gradients experienced by Arctic copepods under winter sea ice. PNAS 110:E4960-E4967 https://doi.org/10.1073/pnas.1315162110
  30. Lewis E, Wallace DWR (1998) Program developed for $CO_2$ system calculations. Carbon Dioxide Information Analysis Center, Tennessee, 17 p
  31. Lischka S, Budenbender J, Boxhammer T, Riebesell U (2010) Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth. Biogeosciences Disc 7:8177-8214 https://doi.org/10.5194/bgd-7-8177-2010
  32. Mauchline J (1998) Advances in marine biology: the biology of Calanoid Copepods (vol 33). Academic, London 710 p
  33. Mayor DJ, Everett NR, Cook KB (2012) End of century ocean warming and acidification effects on reproductive success in a temperate marine copepod. J Plankton Res 34:258-262 https://doi.org/10.1093/plankt/fbr107
  34. Mayor DJ, Matthews C, Cook K, Zuur AF, Hay S (2007) $CO_2$-induced acidification affects hatching success in Calanus finmarchicus. Mar Ecol-Prog Ser 350:91-97 https://doi.org/10.3354/meps07142
  35. McConville K, Halsband C, Fileman ES, Somerfield PJ, Findlay HS, Spicer JI (2013) Effects of elevated $CO_2$ on the reproduction of two calanoid copepods. Mar Poll Bull 73:428-434 https://doi.org/10.1016/j.marpolbul.2013.02.010
  36. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681-686 https://doi.org/10.1038/nature04095
  37. Park C (1997) Seasonal distribution, egg production and feeding by the marine copepod Calanus sinicus in Asan Bay, Korea. J Korean Soc Oceanogr 32:85-92
  38. Park C, Lee PG (1995) Egg production by marine copepod Calanus sinicus in Asan Bay, Korea. Bull Korean Fish Soc 28:105-113
  39. Pedersen SA, Hansen BH, Altin D, Olsen AJ (2013) Mediumterm exposure of the North Atlantic copepod Calanus finmarchicus (Gunerus, 1770) to $CO_2$-acidified seawater: effects on survival and development. Biogeosciences 10:7481-7491 https://doi.org/10.5194/bg-10-7481-2013
  40. Portner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist's view. Mar Ecol-Prog Ser 373:203-217 https://doi.org/10.3354/meps07768
  41. Portner HO, Langenbuch M, Michaelidis B (2005) Synergistic effects of temperature extremes, hypoxia, and increases in $CO_2$ on marine animals: from earth history to global change. J Geophys Res 110:C09S10. doi: 10.1029/2004JC002561
  42. Raven J, Caladerira K, Elderfield H, Hoegh-Guldberg O, Liss P, Riebesell U, Shepherd J, Turley C, Watson A (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society of London, Policy document 12/05, 60 p
  43. Riebesell U, Reigstad M, Wassmann P, Noji T, Passow U (1995) On the trophic fate of Phaeocystis pouchetii (Hariot): VI. Significance of Phaeocystis-derived mucus for vertical flux. Netherlands J Sea Res 33:193-203 https://doi.org/10.1016/0077-7579(95)90006-3
  44. Riser CW, Wassmann P, Olli K, Arashkevich E (2001) Production, retention and export of zooplankton faecal pellets on and off the Iberian shelf, north-west Spain. Prog Oceanogr 51:423-441 https://doi.org/10.1016/S0079-6611(01)00078-7
  45. Rose JM, Feng Y, Gobler CJ, Gutierrez R, Hare CE, Leblanc K, Hutchins DA (2009) Effects of increased $pCO_2$ and temperature on the North Atlantic spring bloom. II. Microzooplankton abundance and grazing. Mar Ecol-Prog Ser 388:27-40 https://doi.org/10.3354/meps08134
  46. Sung CG, Kim TW, Park YK, Kang SG, Inaba K, Shiba K, Choi TS, Moon SD, Litvin S, Lee KT, Lee JS (2014) Species and gamete-specific fertilization success of two sea urchins under future levels of $CO_2$. J Mar Syst 17:67-73
  47. Uye S (1988) Temperature-dependent development and growth of Calanus sinicus (Copedoda: Calanoida) in the laboratory. Hydrobiologia 167/168:285-293 https://doi.org/10.1007/BF00026316
  48. Uye S (2000) Why does Calanus sinicus prosper in the shelf ecosystem of the Northwest Pacific Ocean? ICES J Mar Sci 57:1850-1855 https://doi.org/10.1006/jmsc.2000.0965
  49. Vehmaa A, Brutemark A, Engstrom-Ost J (2012) Maternal effects may act as an adaptation mechanism for copepods facing pH and temperature changes. PLoS One 7:e48538 https://doi.org/10.1371/journal.pone.0048538
  50. Wang R, Zuo T, Wang K (2003) The Yellow Sea Cold Bottom Water-an oversummering site for Calanus sinicus (Copepoda, Crustacea). J Plankton Res 25:169-183 https://doi.org/10.1093/plankt/25.2.169
  51. Wang S, Li C, Sun S, Ning X, Zhang W (2009) Spring and autumn reproduction of Calanus sinicus in the Yellow Sea. Mar Ecol-Prog Ser 379:123-133 https://doi.org/10.3354/meps07902
  52. Weydmann A, Soreide JE, Kwasniewski S, Widdicombe S (2012) Influence of $CO_2$-induced acidification on the reproduction of a key Arctic copepod Calanus glacialis. J Exp Mar Biol Ecol 428:39-42 https://doi.org/10.1016/j.jembe.2012.06.002
  53. Zervoudaki S, Frangoulis C, Giannoudi L, Krasakopoulou E (2013) Effects of low pH and raised temperature on egg production, hatching and metabolic rates of a Mediterranean copepod species (Acartia clausi) under oligotrophic conditions. Mediterr Mar Sci 15:74-83 https://doi.org/10.12681/mms.553
  54. Zhang D, Li S, Wang G, Guo D (2011) Impacts of $CO_2$-driven seawater acidification on survival, egg production rate and hatching success of four marine copepods. Acta Oceanol Sin 30:86-94 https://doi.org/10.1007/s13131-011-0165-9
  55. Zhang GT, Sun S, Zhang F (2005) Seasonal variation of reproduction rates and body size of Calanus sinicus in the southern Yellow, China. J Plankton Res 27:135-143