• Title/Summary/Keyword: alzheimer disease

Search Result 1,186, Processing Time 0.023 seconds

The Effects of Rheum palmatum(RHP) Extract on the the Alzheimer's Disease Model (대황(大黃)이 Alzheimer's Disease 병태(病態) 모델에 미치는 영향(影響))

  • Park, Chul-Hwan;Jung, In-Chul;Lee, Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.16 no.1
    • /
    • pp.67-80
    • /
    • 2005
  • This experiment was designed to investigate the effect of Rheum palmatum(RHP) on the Alzheimer's disease. The effects of RHP extract on amyloid precursor proteins(APP), acetylcholinesterase(AChE), glial fibrillary acidic protein(GFAP) mRNA of PC-12 cell treated by $A{\beta}\;and\;IL-1{\beta},\;IL-6,\;TNF-{\alpha}$ mRNA of THP-1 cell treated by LPS and AChE activity of PC-12 cell lysate treated by $A {\beta}$and behavior of memory deficit rats induced by scopolamine and mice glucose, uric acid, AChE activity of memory deficit rats induced by scopolamine were investigated, respectively. The results were summarized as follows ; 1. RHP extract suppressed APP, AChE, GFAP mRNA in PC-12 cell treated by $A{\beta} $. 2. RHP extract suppressed $IL-1{\beta} $, IL-6 $TNF-{\alpha}$ mRNA in THP-1 cell treated by LPS. 3. RHP extract suppressed AChE activity in cell lysate of PC-12 cell treated by $A{\beta}$. 4. HP extract increased glucose, decreased uric acid and AChE significantly in the serum of the memory deficit rats induced by scopolamine. 5. RHP extract group showed significantly inhibitory effect on the memory deficit of mice induced by scopolamine in the experiment of Morris water maze. According to the above results, it is suggested that RHP extract might be usefully applied for prevention and treatment of Alzheimer’s disease and memory deficit symptom.

  • PDF

Effects of Amomum villosum(AMV) Extract on the Alzheimer's Disease Model (사인(砂仁)이 Alzheimer's Disease 병태 모델에 미치는 영향)

  • Choi Bo-Yun;Jung In-Chul;Lee Sang-Ryong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.43-51
    • /
    • 2006
  • This experiment was designed to investigate the effect of Amomum villosum(AMV) on the Alzheimer's disease. The effects of AMV extract on amyloid precursor proteins(APP), acetylcholinesterase(AChE), glial fibrillary acidic protein(GFAP) mRNA of PC-12 cell line treated by amyloid $\beta$ protein($A{\beta}$) : IL-$1{\beta}$, IL-6, TNF-$\alpha$ mRNA of THP-1 cell line treated by lipopolysaccharide(LPS) : AChE activity of PC-12 cell lysate treated by $A{\beta}$ : serum glucose, uric acid, AChE activity of memory deficit rats induced by scopolamine : behavior of memory deficit mice induced by scopolamine were investigated, respectively. AMV extract suppressed APP, AChE, GFAP mRNA in PC-12 cell treated by $A{\beta}$ : IL-$1{\beta}$, IL-6, TNF-$\alpha$ mRNA in THP-1 cell treated by LPS , AChE activity in cell lysate of PC-12 cell treated by $A{\beta}$. AMV extract increased glucose, decreased uric acid and AChE significantly in the serum of the memory deficit rats induced by scopolamine. AMV extract group showed significantly inhibitory effect on the memory deficit of mice induced by scopolamine in the experiment of Morris water maze. According to the above results, it is suggested that AMV extract might be usefully applied for prevention and treatment of Alzheimer's disease.

Effects of Added Chongmyung-tang on Behavior and Molecular Factors in the Alzheimer's Disease Model (ACM의 알츠하이머 생쥐 모델의 행동과 생체인자에 미치는 영향)

  • Kim, Kook Ki;Choi, Woo Chang;Kim, Seung Hyung;Namgung, Uk;Park, Yang Chun;Kang, Wee Chang;Lee, Sang Ryong;Jung, In Chul
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.39-45
    • /
    • 2015
  • This experiment was designed to investigate the effect of Added Chongmyung-tang (ACM) on Alzheimer's disease mouse model. Effects of ACM on learning behavior were investigated using the Morris water maze method. Expression levels of molecular factors related to Alzheimer's disease such as glial fibrillary acidic protein (GFAP), cluster of differentiation antigen 68 (CD68), and tau protein in the hippocampus of APP-SWE Tg2576 mice were analyzed by immunofluorescence staining method. ACM reduced escape latency in the Morris water maze test. ACM decreased the expression level of GFAP and tau protein in the hippocampus. These results suggest that ACM may be involved in regulating molecules that are known to play an important role in the pathogenesis of Alzheimer's disease.

Effects of Green Tea Extract Diet on the Phospholipid Content of Aluminum-Induced-Damaged Cerebral Tissue of Old Rats (노령 흰쥐의 대뇌 조직에서 알루미늄 투여에 대한 녹차 추출물이 인지질 함량에 미치는 효과)

  • Jung, Young-Hee;Han, Sung-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.25 no.2
    • /
    • pp.232-239
    • /
    • 2010
  • This study was designed to investigate the effects of green tea extract on aluminum-induced damage to phospholipid content in old rat cerebral tissue. The aim of this study was to investigate the possibility that aluminum is the cause of Alzheimer's disease. Forty Sprague-Dawley old male rats weighing 350$\pm$10 g were divided into four groups, consisting of a control group (CON), 40 ppm aluminum sulfate group (Al-40), green tea water extract group (GTWE), and 40 ppm aluminum sulfate and green tea water extract groups (Al-40+GTWE) and kept on their respective diets for 12 weeks. In order to discover the influence of aluminum on cerebral tissue of old male rats, the serum aluminum concentration and phospholipid composition were compared between the aluminum-treated group and the normal group. The results showed that the serum aluminum concentration was higher in the aluminum sulfate-treated group than in the normal group. The cerebral tissue phospholipid concentration decreased significantly in the aluminum sulfate treated group as compared to the normal group. The results of this experiment show that increase of aluminum concentration in experimental animals causes the rise of serum aluminum and phospholipid concentrations, phenomena that are very similar to those shown in Alzheimer's disease., The results of this experiment, together with reports that aluminum is a cause of neurofibrillary tangles in cerebral tissue, therefore demonstrate the possibility that aluminum is the cause of Alzheimer's disease. Green tea water extract is also shown to be an effective therapeutic candidate for the treatment of Alzheimer's disease.

A Case Report of Worsening Alzheimer's Disease Symptoms after COVID-19 Infection That Were Treated with Yigan-san-gami (COVID-19 감염 후 알츠하이머 치매증상의 악화에 대한 억간산 가미 치험 1례)

  • Hyo-jeong Lee;Sun-woo Kwon;Yi-jae Kwon;Jung-min Son;Choong-hyun Park;Ji-yoon Lee;Jung-eun Lee
    • The Journal of Internal Korean Medicine
    • /
    • v.45 no.2
    • /
    • pp.149-158
    • /
    • 2024
  • Introduction: In this case report, we describe the clinical effectiveness of Yigan-san-gami in improving symptoms in a patient with worsening Alzheimer's dementia after COVID-19 infection. Case presentation: Symptoms of dementia worsened in a patient with Alzheimer's disease after COVID-19 infection. Western medicines were added following neurological consultation. However, there was no medicinal effect. The patient was treated with Korean medicine (Yigan-san-gami) three times a day. We used daily charts, the Korean Mini-Mental State Examination-2 (K-MMSE-2), Clinical Dementia Rating (CDR), and Short Version Geriatric Depression Scale (SGDS) to assess the patient's symptoms. Cognitive decline and behavioral and psychological symptoms of dementia (BPSD) improved following the treatment with Yigan-san-gami. Conclusion: The results suggest that Yigan-san-gami may be effective in improving symptoms of Alzheimer's disease that worsen after COVID-19 infection.

Study of Repair Effect of Anti-Alzheimer on $\beta$APP Overexpression In Neuroblastoma cell line by Ramulus et Uncus Uncariae (조구등이 $\beta$APP 과발현 인간 신경아세포암에서의 항치매 효과에 관한 연구)

  • Kim Sang Ho;Kang Won Hyung;Lyu Yeoung Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.960-966
    • /
    • 2002
  • Ramulus et Uncus Uncariae (JGD) has sweet in flavour and slightly cold in property, acting on the liver and pericardium channels. This drug was described in a medical classic as having the ability to remove 'heat', check hyperfunction of the liver and relieve dizziness, tremors, and convulsions, and subdue 'endogenous wind'. So this study was estimated to check the anti-neuropathological effect of JGD on the Alzheimer in βAPP overexpression in neuroblastoma cell line and JGD extract was showed significantly anti-alzheimer effects (50 and 100 μg/㎖ of JGD extracts) compared with control group. Ramulus et Uncus Uncariae has anti-alzheimer effects on the βAPP overexpression in neuroblastoma cell line. So we expect that Ramulus et Uncus Uncariae may be used as a drug for neurodegenerative disease, such as stroke, Alzheimer's disease (AD). These results indicate that Ramulus et Uncus Uncariae possess strong inhibitory effect in the nervous system of apoptosis and repair effect against the degeneration of Neuroblastoma cells by βAPP expression.

Improvements in Cognitive and Motor Function by a Nutrient Delivery System Containing Sialic Acid from Edible Bird's Nest (제비집 시알산 유래 영양전달체(Nutrient Delivery System)의 인지기능 및 운동기능 개선 효과)

  • Kim, Dong-Myong;Jung, Ju-Yeong;Lee, Hyung-Kon;Kwon, Yong-Seong;Baek, Jin-Hong;Han, In Suk
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.6
    • /
    • pp.614-623
    • /
    • 2020
  • The objective of this study was to produce a nutrient delivery system (NDS) using sialic acid extracted from edible bird's nest (EBN), which improves brain function in patients with Alzheimer's disease and Parkinson's disease, by affinity bead technology (ABT). The inhibitory activity of acetylcholinesterase (AChE) and pyramidal cells in the dentate gyrus of the hippocampus were analyzed to investigate the effect of a sialic acid NDS on Alzheimer's disease. Also, the effect of a sialic acid NDS on Parkinson's disease was evaluated by rota-rod test and pole test in an animal model. Among the groups treated with donepezil, EBN, and sialic acid NDS, the AChE activity was the lowest in the sialic acid NDS-treated group. The results of the hippocampus analysis of the rat model confirmed that the sialic acid NDS inhibited amyloid-beta accumulation depending upon the concentration. Also, the sialic acid NDS group showed more improvement in motor deterioration than the1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced group in both the rota-rod test and pole test. Therefore, the sialic acid NDS had an effect of protecting not only Alzheimer's disease by inhibiting AChE and amyloid-beta accumulation, but Parkinson's disease by preventing neurotoxicity induced by MPTP.

Animal Models of Alzheimer's Dementia (알쯔하이머 치매의 동물모형)

  • Woo, Sung-Il
    • Korean Journal of Biological Psychiatry
    • /
    • v.6 no.2
    • /
    • pp.149-152
    • /
    • 1999
  • Transgenic mice models of Alzheimer's disease were produced by overexpressing APP(amyloid precursor protein) mutant and presenilin mutant genes using the promotors that induced neuronal expression. The neuropathologies, electrophysiological changes and behavioral changes that were demonstrated in these transgenic mice models were amyloid changes, gliotic changes, A-beta increases, deficit in LTP(long-term potentiation) and behavioral changes. Some or all of the above changes were found in each transgenic mice model. These models generally showed amyloid neuropathology but they usually lacked the neurofibrillary tangles. So, they can be regarded as partial models of Alzheimer's disease. The development of them is undoubtedly the great progress toward future research.

  • PDF

The Effect of Bee Venom on Scopolamine Induced Memorial Impairment (봉약침액(蜂藥鍼液)이 Scopolamine으로 유발(誘發)된 기억(記憶) 장애(障碍)에 미치는 영향(影響))

  • Song, Jeong-Yeon;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.23 no.3
    • /
    • pp.103-115
    • /
    • 2006
  • Alzheimer's disease (AD) is the most prevalent form of neurodegenerative disease associated with aging in the human population. This disease is characterized by the following 4 structural changes : Atrophy of the Cortex, Parasympathetic, and other neural cells, the existence of Neurofibrillary tangles (NFTs), and the accumulation of Senile plaques. NFTs and Senile plaques is known to be the index of this disease. Senile plaques disturbs the neutro transmission and depletes of Acetylcholine. So, Recovery of Acetylcholine is the primal objective for treating Alzheimer's disease. So, Inhibiting the activity of Acetylcholine Esterase (AChE), which causes the hydrolysus of acetylcholine into choline and acetate, can be seen as a key role for treating Alzheimer's disease. Increasing body of evidence has been demonstrated that Bee Venom Acupuncture (BV) could compete with complex protein involving in multiple step of $NF-_{\kappa}B$ activation and exert the anti -inflammatory potential of combined inhibition of the prostanoid and nitric oxide synthesis systems by inhibition of IKK and $NF-_{\kappa}B$. The effect of BV through behavioral tests after memory impairment induced by Scopolamine. We examined the improving effect of BV on the Scopolamine (1 mg/Kg, i.p.)-induced memorial impairment using passive avoidance response and water maze tests in the mice. BV (0.84, $1.67\;{\mu}g/ml$) reversed the Scopolamine-induced memorial impairment in dose dependent manner. This study therefore suggests that BV acupuncture method may be useful for prevention of development or progression of AD.

  • PDF

Effects and molecular mechanisms of Noemyeong-san, a novel herbal prescription for treating Alzheimer's disease on microglia (미세아교세포에서 알츠하이머형 치매 치료 처방인 뇌명산(腦明散)의 효능 및 기전연구)

  • Han, Sangtae;Jeong, Ji-Cheon
    • Herbal Formula Science
    • /
    • v.25 no.4
    • /
    • pp.471-481
    • /
    • 2017
  • Objectives : Noemyeong-san (NMS) is a novel herbal prescription composed of five oriental medicinal herbs including Prunellae Spica, Betulae Cortex, Foeniculi Fructus, Asiasari Radix, and Clematidis Radix for treating Alzheimer's disease. In the present study, we investigated the effects and molecular mechanisms of NMS on BV2 microglia to evaluate the potential action of this formula for preventing or treating neurodegenerative disease such as Alzheimer's disease. Methods : To determine the cytotoxicity of NMS on BV2 microglia, the MTT assay was performed. The effects of NMS on lipopolysaccharide (LPS)-stimulated BV2 microglia were determined with a nitric oxide (NO) assay and western blots for inflammatory mediator-related proteins, mitogen activated protein kinases (MAPKs), nuclear factor kappa B (NF-${\kappa}B$) pathway-related proteins, and heme oxygenase-1 (HO-1). Result : NMS inhibited induction of iNOS and COX-2 as well as NO production without affecting the cell viability in LPS-stimulated BV2 microglia. NMS also suppressed activation of ERK and p38 MAPK among main kinases of MAPKs as well as NF-${\kappa}B$ by LPS stimulation. Furthermore, NMS dose-dependently induced the expression of HO-1 and the inhibitory effect of NMS on the production of NO were blocked by pretreatment with an HO-1 inhibitor, Snpp. Conclusions : These results demonstrate that NMS has potent anti-neuroinflammatory effect on the LPS-stimulated microglia. These findings provide evidences for NMS to be considered as a new prescription for preventing or treating neurodegenerative disease such as Alzheimer's disease.