• 제목/요약/키워드: alunite

검색결과 53건 처리시간 0.022초

노화납석광산에서 산출되는 명반석대에 대한 지구화학적 연구 (A Geochemical Study on the Alunite Zone of the Nohwa Pyrophyllite Deposits)

  • 신상은;박홍봉
    • 자원환경지질
    • /
    • 제25권4호
    • /
    • pp.373-378
    • /
    • 1992
  • Ores of the Nohwa Pyrophyllite Deposits are composed mainly of pyrophyllite, kaolinite (dickite), quartz, pyrite, alunite and diaspore, etc. Alunite ore zone is located in the middle-lower parts of the deposits. Alunite ore zone with thickness of 20~30 cm is divided into two parts according to alunite contents: reddish and white greyish zone in the upper and lower parts, respectively. And the reddish alunitic ore has higher contents $Al_2O_3$, $K_2O$, $Na_2O$ and Ig.loss than the white greyish alunitic ore. Perhaps alunitization of the deposits occurred in the vicinity of paleo-ground water table. EPMA data shows that sodium replaces potassium considerably in alunite structures and that the hydrothermal solution probably contains considerable amounts of sodium.

  • PDF

전남(全南) 옥매산광상(玉埋山鑛床)의 열수변질작용(熱水變質作用) 및 광석광물(鑛石鑛物)에 대한 광물학적(鑛物學的) 연구 (Hydrothermal Alteration and Mineralogy of Alunite and Kaolinite in the Ogmae Deposit, Southwest Jeonnam)

  • 김영희;문희수;김종환;유장한;김인준
    • 자원환경지질
    • /
    • 제23권3호
    • /
    • pp.287-308
    • /
    • 1990
  • The Ogmae alunite-kaolinite deposit occurs in acidic tuff, the Hwangsan Tuff, of upper Crataceous age in the Haenam volcanic field, SW Jeonnam. This deposit characterized by advanced argillic alteration formed $71.8{\pm}2.8{\sim}73.9{\pm}2.8$ Ma ago in very shallow depth environment with acid-sulfate solution. Wallrock alteration can be classified into four zones from the center to the margin of the deposit: alunite, kaolinite, illite, and silicified zone. The mineral assemblage in the alunite zone, ore zone, is alunite-quartz-pyritekaolinite. Consideration of stability relation of these minerals suggests that the maximum alteration temperature is estimated at about $250^{\circ}C$ with solution pH of 3 or below assuming that pressure does not exceed 0.3 Kb. Alunite occurs as two different types; replacement and vein-type deposit. The former one consists of fine grained alunite and the later one coarse grained and relatively pure alunite that formed by open space filling. Isomorphous substitution of Na for K in these two types of alunites range 0 to 40 %, indicating that Na/K ratio in the solution is spontaneously changed during the alteration process. Alunite which has higher Na substitution probably formed in an earlier stage while the solution sustain high Na/K ratio. K-Ar age of alunites indicate that the replacement alunite formed earlier($73.9{\pm}2.8Ma$) than the vein-type alunite($71.8{\pm}2.8Ma$). The ${\delta}^{34}S$ value of pyrite and alunite indicate that those minerals formed at isotopically nonequillibrium state. The ${\delta}^{16}O$ and ${\delta}D$ values, of kaolintics 5.0 to 9.0‰ and -54 to -99‰, respectively, indicate that those are formed by hydrothermal solution having magmatic origin which have been diluted by low ${\delta}D$ meteoric water.

  • PDF

전남 해남지역 납석, 명반석 및 도석광상의 분포, 광물조성 및 형성기구 (Mineralogy, Distribution and Origin of Some Pyrophyllite-Dickite-Alunite Deposits in the Haenam Area, Southwest Korea)

  • 문희수;송윤구
    • 자원환경지질
    • /
    • 제25권1호
    • /
    • pp.41-50
    • /
    • 1992
  • Mineral assemblages, mineral chemistries and stable isotope compositions of altered rocks of the Ogmae, Seongsan, Haenam and Gusi mines near the Haenam volcanic field in the southwestern part of the Korea peninsula were studied. Characteristic hydrothermal alteration zones in these deposits occurring in the Cretaceous volcanics and volcanogenic sediments, acidic tuff, and rhyolite, were outlined. Genetic environment with particular reference to the spatial and temporal relationships for these deposits were considered. The alteration zones defined by a mineral assemblage in the Ogmae and Seongsan deposits can be classified as alunite, pyrophyllite, kaolinite or dickite, quartz, illite or illite/smectite. Alunite was not developed in the Gusi and Haenam deposits. Boundaries between the adjacent zones are always gradational except for vein-type alunite. Alteration zones are superimposed upon each other in some localities. These deposits formed $71.8{\pm}2.8{\sim}76.6{\pm}2.9$ Ma ago, which is the almost same age of later volcanic rocks $79.4{\pm}1.7{\sim}82.8{\pm}1.2$ Ma, the Haenam Group, corresponding to Campanian. It indicates that hydrothermal alteration of these deposits appeared to be related to felsic volcanism in the area. Consideration of the stability between kaolinite, alunite, pyrite and pyrophyllite, and the geothermometry based on the mineral chemistry of illite and chlorite suggests that the maximum formation temperature for alunite and pyrophyllite can be estimated at about $250^{\circ}C$ and $240{\sim}290^{\circ}C$, respectively. It also suggests that these deposits were formed by acidic sulfate solution with high aqueous silica and potassium activity in a shallow depth environment. Compositional variation of alunite also suggests that the physico-chemical conditions fluctulated considerably during alteration processes, indicating shallow depth environment. The Haenam deposit was formed at a relatively greater depth than the others. The sulfur isotope composition of alunite and pyrite indicates that sulfur probably had a magmatic source, and the oxygen isotope composition for kaolinite indicates that the magmatic hydrothermal solution was diluted by circulating meteoric water.

  • PDF

전남지역(全南地域) 명반석광상(明礬石鑛床)의 성인(成因)에 관(關)한 연구(硏究) (A Study on Genesis of Alunite Deposits of Jeonnam Area)

  • 문희수
    • 자원환경지질
    • /
    • 제8권4호
    • /
    • pp.183-201
    • /
    • 1975
  • The south and southwestern parts of Jeonra-namdo has been known as an alunite province in Korea. The alunite deposits investigated for the present study are Okmaisan, Seongsam, Bugog, Gasado south, Gasado north, Jangsando, Dogcheon and Jungyongri deposits. The main purpose of this study is to depict the genetical origin of the alunite deposits. The rocks distributed in the areas mentioned above consist chiefly of rhyolitic tuff, breccia tuff and andesitic tuff of Cretaceous age which represent different episodes of volcanic activities during Cretaceous epoch. The attitude of bedding of the tuffaceous rocks varies from place to place but generally dips very gently. The alunite deposits are embedded mostly in the rhyolitic tuff so that they appear as layered deposits, this occurrence may be the result of stratigraphic and lithologic controls. The result of this study can be summarized as below. The mineral sequence studied by the mineral paragenesis and the result of the spectrograph anlyses is such that (1) alunite was formed at first and pyrophyllite was nearly contemporaneous with alunite but pyrophyllite formation can be recognized as a secondary mineralization products, (2) kaoline was succeeded to form later and hematite finally deposited, and (3) pyrite was deposited from the begining to the end of the above mineralization period. The compositional change of host rocks is such that CaO, $SiO_2$ and $Na_2O$ were largely removed from the parent rocks and some $Al_2O_3$ and $SO_3$ were transported by the solution so as to enrich the rocks. The sequencial process of such mineralization has resulted in forming those distinguish mineral zones; alunite, kaoline, pyrophyllite, silicifide and sulphide zone which manifest irregular shape. These deposits were formed by hydrothermal solution which was possibly low temperature and contained sulphuric acid originated from $H_2S$ and $SO_2$ gases.

  • PDF

하소(?燒) 명반석(明礬石)에 의(依)한 고로수쇄(高爐水碎)슬래그의 활성화(活性化) 특성(特性) (Activation Property of Blast Furnace Slag by Calcined Alunite)

  • 김형석;조영도;안지환;목촌방부;한춘
    • 자원리싸이클링
    • /
    • 제15권4호
    • /
    • pp.27-35
    • /
    • 2006
  • 본 연구에서는 명반석 $[K_{2}SO_{4}{\cdot}Al_{2}(SO_{4})_{3}{\cdot}4Al(OH)_{3}]$을 고로수쇄슬래그의 활성화제로서 활용하기 위하여 하소 명반석과 고로수쇄슬래그의 수화반응 특성을 연구하였다. $650{\circ}C$에서 하소시킨 명반석은 $KAl(SO_{4})_{2}$$Al_{2}O_{3}$로 구성되어 있으며 하소 명반석-소석회-석고 계에서 하소 명반석은 소석회 및 석고와 $2KAl(SO_{4})_{2}+2Al_{2}O_{3}+13Ca(OH)_{2}+5CaSO_{4}{\cdot}2H_{2}O+73H_{2}O{\rightarrow}3(3CaO{\cdot}Al_{2}O_{3}{\cdot}3CaSO_{4}{\cdot}32H_{2}O)+2KOH$와 같이 반응하여 ettringite($3CaO{\cdot}Al_{2}O_{3}{\cdot}3CaSO_{4}{\cdot}32H_{2}O)$를 형성한다. 하소 명반석-고로수쇄슬래그 계에서는 하소 명반석에서 용해된 황산이온($SO_{4}^{2-}$)이 소석회와 반응하여 석고를 형성시키고, 석고는 다시 고로수쇄슬래그와 반응하여 ettringite를 형성시키면서 슬래그의 수화반응을 촉진시키기 때문에 하소 명반석을 고로수쇄슬래그의 활성화제로 사용할 수 있다.

국산 명반석과 황산염으로부터 고순도의 미세한 알루미나의 제조 및 특성에 관한 연구 (Fabrication and Characterization of High Purity of Fine Alumina from Korean Alunite and Sulfate Salts)

  • 변수일;이수영;김종희
    • 한국세라믹학회지
    • /
    • 제16권1호
    • /
    • pp.13-20
    • /
    • 1979
  • High purity alumina has been extracted form low grade Korean alunite. Alunite ore was treated by 15% $NH_4OH$ solution, followed by 10% $H_2SO_4$ leaching and metallic impurities such as Fe and Ti were removed by solvent extraction method. Alumina prepared by the extraction process was 99.9% in purity. Hot Petroleum Drying Method has been employed for the preparation of uniformly fine alumina powder, using chemical reagent aluminum sulfate and ammonium aluminum sulfate extrated from Korea alunite. The sinterability of alumina powder prepared by Hot Petroleum Drying Method was shown to be improved in comparison with the one treated by other methods such as ball milling method, but dry pressing was difficult due to the agglomeration of calcined powder. The best slip of alumina powder prepared by Hot Petroleum Drying Method contained a lower soild content than the one treated by other methods. The alumina body formed by soild and drain casting with the former alumina powder showed a higher sintered density.

  • PDF

전남 서남부지역의 납석, 고능석과 명반석 광상의 광물조성 및 지구화학적 특성에 관한 연구 (The Mineral Compositions and Geochemical Characters of Pyrophyllite, Kaolinite, and Alunite deposits of Southwestern Cheonnam, Korea)

  • 신상은;박홍봉
    • 자원환경지질
    • /
    • 제23권1호
    • /
    • pp.11-23
    • /
    • 1990
  • Pyrophyllite, kaolinite, and alunite deposits distributing in Southwestern parts of Cheonnam are classified into three types of minerals assemblages by the results of X-ray diffraction analysis etc. The first mineral assemblages contains pyrophyllite, kaolinite, dickite, quartz, diaspore and/or corundum, the second one contains alunite inseads of corundum, and the third one contains alunite without pyrophyllite and diaspore. It is can be considered that the depoSits which consist mainly of pyrophyllite are formed higher temperature than the other deposits. Judging form the chemical analyses the chemical compositions of hydrothermal solutions acting to the deposits seem to be relatively simple. But the hydrothermal solutions which generated Dogcheon, Jugjcon, Ogmaesan, and Seongsan mine contain rather somewhat higher $K_2O$. The values of the Trace Elements and REE analysis of the host rocks of deposits suggest that the host rocks are these deposits are the last products of magmatic differentiation.

  • PDF

규산염 알루미나 광으로부터 알루미나 추출에 관한 연구 (Alumina Extraction from Aluminium Silicates)

  • 신병식;맹중재
    • 한국세라믹학회지
    • /
    • 제18권3호
    • /
    • pp.182-186
    • /
    • 1981
  • The extraction of $Al_2O_3$ from the backed mixture of grinded aluminium silicates with $H_2SO_4$ and required heating energy for the baking process has been investigated. The extraction ration of $Al_2O_3$ from baked kaolin and alunite being mixed with 70-80% $H_2SO_4$ at 12$0^{\circ}C$ for 3 hours was more than 90%, the yield was based on alumina component in the ore by extracted with water. The required heating energy was 1782 cal/300gr (Alunite), that is, when alunite ore treated with equivalent amount of 80% $H_2SO_4$, also left it for 75 minites at 12$0^{\circ}C$, The required heating energy was 22, 553 cal/200gr(Alunite) when the above sample was heated again at 15$0^{\circ}C$ for 2 hours.

  • PDF

요업원료로서 명반석의 이용에 관한 연구(제III보) Mullite질내화재원료로의 이용 (Utilization of Alunite to Ceramic Raw Materials (III))

  • 백용혁;최상흘
    • 한국세라믹학회지
    • /
    • 제11권3호
    • /
    • pp.33-38
    • /
    • 1974
  • The possibility of the sources for the manufacture of mullite-rich refractories from the modified domestic alunite was studied. The modifying method of alunite studied were performed by calcination, wet ballmilling, and washing with water. For synthesis of mullite-rich refractories, the modified alunite with the addition of alumina and Fe2O3 as mineralizer was fired at 1350$^{\circ}$-155$0^{\circ}C$, and the following results were obtained: 1) The suitable firing temperature range was 1450$^{\circ}$-150$0^{\circ}C$, and adequate amounts of Al2O3 and Fe2O3 were below 30% and 3~4%, respectively. 2) Thermal expansion coefficient proportional to heating temperature was about 5$\times$10-6~10$\times$10-6cm/cm.deg. 3) The mineralogical compositions of the sintered specimens were found as mainly mullite and corundum.

  • PDF