• Title/Summary/Keyword: aluminum oxide layer

Search Result 256, Processing Time 0.025 seconds

Fabrication of Nano Metal Compounds Using Porous Aluminum Oxide Films (기공성 알루미나 산화 피막을 이용한 나노 금속화합물의 제조)

  • Oh, Han-Jun;Jeong, Yong-Soo;Chi, Choong-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.5
    • /
    • pp.248-254
    • /
    • 2010
  • Porous $Al_2O_3$ film can be utilized as template for fabrication of nano-structured materials. Porous anodic alumina layer as template was prepared by anodization of aluminum in oxalic acid, and the pore diameter and barrier-type alumina layer can be controlled for proper anodizing parameter by widening process in $H_3PO_4$ solution. The $SiO_2$ nanodot and Ni nanowire was fabricated using anodic alumina template and their characteristics were investigated using SEM and TEM with EDS. Especially the growth mechanism of $SiO_2$ nanodot in alumina membrane compared with thinning of the alumina barrier layer during anodization was also investigated.

Enhanced Performance of the OLED with Plasma Treated ITO and Plasma Polymerized Methyl Methacrylate Buffer Layer (ITO 플라즈마 표면처리와 ppMMA 버퍼층으로 제작한 OLED의 발광특성)

  • Lim Jae-Sung;Shin Paik-Kvun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.30-33
    • /
    • 2006
  • Transparent indium tin oxide (ITO) anode surface was modified using $O_3$ Plasma and organic ultrathin buffer layers were deposited on the ITO surface using 13.56 MHz RF plasma polymerization technique. The EL efficiency, operating voltage and lifetime of the organic light-emitting device (OLED) were investigated in order to study the effect of the plasma surface treatment and role of plasma polymerized organic ultrathin buffer layer. Poly methylmethacrylate (PMMA) layers were plasma polymerized on the ITO anode as buffer layer between anode and hole transport layer (HTL). The plasma polymerization of the organic ultrathin layer were carried out at a homemade capacitive-coupled RF plasma equipment. N,N'-diphenyl-N,N'(3- methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD) as HTL, Tris(8-hydroxyquinolinato) Aluminum $(Alq_3)$ as both emitting layer (EML)/electron transport layer (ETL), and aluminum layer as cathode were deposited using thermal evaporation technique. Effects of the plasma surface treatment of ITO and plasma polymerized buffer layers on the OLED performance were discussed.

Experimental Study on Fabrication of AZO Transparent Electrode for Organic Solar Cell Using Selective Low-Temperature Atomic Layer Deposition (저온 선택적 원자층 증착공정을 이용한 유기태양전지용 AZO 투명전극 제조에 관한 실험적 연구)

  • Kim, Ki-Cheol;Song, Gen-Soo;Kim, Hyung-Tae;Yoo, Kyung-Hoon;Kang, Jeong-Jin;Hwang, Jun-Young;Lee, Sang-Ho;Kang, Kyung-Tae;Kang, Heui-Seok;Cho, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.577-582
    • /
    • 2013
  • AZO (aluminum-doped zinc oxide) is one of the best candidate materials to replace ITO (indium tin oxide) for TCOs (transparent conductive oxides) used in flat panel displays, organic light-emitting diodes (OLEDs), and organic solar cells (OSCs). In the present study, to apply an AZO thin film to the transparent electrode of an organic solar cell, a low-temperature selective atomic layer deposition (ALD) process was adopted to deposit an AZO thin film on a flexible poly-ethylene-naphthalate (PEN) substrate. The reactive gases for the ALD process were di-ethyl-zinc (DEZ) and tri-methyl-aluminum (TMA) as precursors and H2O as an oxidant. The structural, electrical, and optical characteristics of the AZO thin film were evaluated. From the measured results of the electrical and optical characteristics of the AZO thin films deposited on the PEN substrates by ALD, it was shown that the AZO thin film appeared to be comparable to a commercially used ITO thin film, which confirmed the feasibility of AZO as a TCO for flexible organic solar cells in the near future.

Growth of Al2O3/Al Composite by Directed Metal Oxidation of Al Surface Doped with Sodium Source

  • Park, Hong Sik;Kim, Dong Seok;Kim, Do Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.439-445
    • /
    • 2013
  • Both an unreinforced $Al_2O_3$/Al matrix and a ${\alpha}-Al_2O_3$ particulate reinforced composite have been produced by the oxidation of an Al surface doped with NaOH in the absence of any other dopant. Fabrication of the matrix was initiated by the formation of $NaAlO_2$, which provides a favorable surface structure for the matrix formation by breaking the protective $Al_2O_3$ layer on Al. During the matrix growth, the external surface of the growth front was covered with a very thin sodium-rich oxide. A cyclic formation process of the sodium-rich oxide on the growth surface was proposed for the sodium-induced directed metal oxidation process. This process involves dissolution of the sodium-rich oxide, motion of Na to the growth front, and re-formation of the oxide on the surface. Near-net-shape composites were fabricated by infiltrating an $Al_2O_3$/Al matrix into a ${\alpha}-Al_2O_3$ particulate preform, without growth barrier materials. The infiltration distance increased almost linearly in the NaOH-doped preform.

Annealing Temperature Dependence on Anodizing Properties of ZrO2/Al Films Prepared by Sol-gel Method (졸-겔법으로 제조된 ZrO2/Al막의 열처리 온도에 따른 양극산화 특성)

  • 박상식;이병택
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.909-915
    • /
    • 2003
  • Anodic oxide films on aluminum play an important role as a dielectrics in aluminum electrolytic capacitor. In order to obtain the high capacitance, ZrO$_2$ films were coated on aluminum foils by sol-gel method and then, the properties of anodized films were studied. The coating and drying of the films were repeated 4-10 times and annealed at 300~$600^{\circ}C$ and the triple layer of ZrO$_2$/Al-ZrO$_{x}$ /Al$_2$O$_3$ was formed onto aluminum substrates after anodizing of ZrO$_2$/Al film. The thickness of $Al_2$O$_3$ layer was decreased with increasing the annealing temperature due to the densification of ZrO$_2$ film. The ZrO$_2$ films were crystallized even at 30$0^{\circ}C$ and showed nanocrystalline structure. The. capacitance of aluminum foil annealed at low temperature was higher than that at high temperature. The increase of capacitance was due to the high capacitance of ZrO$_2$ film annealed at low temperature. The capacitance of ZrO$_2$ coated aluminum increased about 3 times compared to that without a ZrO$_2$ layer after anodizing to 400 V. From these results, the aluminum foils with composite oxide layers are found to be applicable to the aluminum electrolytic capacitor.

Property analysis of multi layer Organic Light Emitting Diodes using equivalent circuit models (등가 회로 모델을 이용한 다층 유기발광 소자의 특성 분석)

  • Park, Hyung-Jun;Kim, Hyun-Min;Yi, Jun-Sin;Nam, Eun-Kyoung;Jung, Dong-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.119-120
    • /
    • 2006
  • The impedance spectroscopy is one of the effective ways to understand the electrical properties of organic light emitting diodes. The frequency-dependant properties of small molecule based OLEDs have been studied. The equivalent circuit of single-layer device is composed of contact resistance ($R_c$), bulk resistance ($R_p$) and bulk capacitance ($C_p$). The equivalent circuit of double layer device is composed of two parallel circuits connected in series, each of which is a parallel resistor and a capacitor. We have fabricated a double layer device indium-rio-oxide (ITO, anode), N,NV -diphenyl- N,NV -bis(3-methylphenyI)-1,1V -diphenyl-4,4V-diamine (TPD, hole-transporting layer), tris-(8-hydroxyquinoline) aluminum (Alq3, emitting layer), and aluminum (AI, cathode) and two single layer devices ([TO/ Alq3/ AI, ITO/TPD/AI).

  • PDF

Friction Behavior of Oil-enriched Nanoporous Anodic Aluminum Oxide Film (오일 함침된 나노 기공 산화알루미늄 필름의 마찰 거동)

  • Kim, Hyo-Sang;Kim, Dae-Hyun;Hahn, Jun-Hee;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.27 no.4
    • /
    • pp.193-197
    • /
    • 2011
  • Friction behavior of nanoporous anodic aluminum oxide(AAO) film was investigated. A 60 ${\mu}m$ thick AAO film having nanopores of 45 nm diameter with 105 nm interpore-diatance was fabricated by mild anodization process. The AAO film was then saturated with paraffinic oil. Reciprocating ball-on-flat sliding friction tests using 1 mm diameter steel ball as the counterpart were carried out with normal load ranging from 0.1 N to 1 N in an ambient environment. The morphology of worn surfaces were analyzed using scanning electron microscopy. The friction coefficient significantly increased with the increase of load. The boundary lubrication layer of paraffinic oil contributed to the lower friction at relatively low load (0.1 N), but it is less effective at high load (1 N). Plastic deformed layer patches were formed on the worn surface of oil-enriched AAO at relatively low load (0.1 N) without evidence of tribochemical reaction. On the other hand, thick tribolayers were formed on the worn surface of both oil-enriched and as-prepared AAO at relatively high load (1 N) due to tribochemical reaction and material transfer.

Investigation of aluminum-induced crystallization of amorphous silicon and crystal properties of the silicon film for polycrystalline silicon solar cell fabrication (다결정 실리콘 태양전지 제조를 위한 비정절 실리콘의 알루미늄 유도 결정화 공정 및 결정특성 연구)

  • Jeong, Hye-Jeong;Lee, Jong-Ho;Boo, Seong-Jae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.254-261
    • /
    • 2010
  • Polycrystalline silicon (pc-Si) films are fabricated and characterized for application to pc-Si thin film solar cells as a seed layer. The amorphous silicon films are crystallized by the aluminum-induced layer exchange (ALILE) process with a structure of glass/Al/$Al_2O_3$/a-Si using various thicknesses of $Al_2O_3$ layers. In order to investigate the effects of the oxide layer on the crystallization of the amorphous silicon films, such as the crystalline film detects and the crystal grain size, the $Al_2O_3$ layer thickness arc varied from native oxide to 50 nm. As the results, the defects of the poly crystalline films are increased with the increase of $Al_2O_3$ layer thickness, whereas the grain size and crystallinity are decreased. In this experiments, obtained the average pc-Si sub-grain size was about $10\;{\mu}m$ at relatively thin $Al_2O_3$ layer thickness (${\leq}$ 16 nm). The preferential orientation of pc-Si sub-grain was <111>.

Kissing-Bond Characteristics in a Friction Stir Welded Aluminum Alloy by Transmission Electron Microscopy

  • Sato, Yutaka S.;Takauchi, Hideaki;Park, Seung-Hwan;Kokawa, Hiroyuki
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.384-386
    • /
    • 2005
  • Initial oxide layer on the butt surface fragments during friction stir welding (FSW) and then often remains as a faint zigzag-line pattern on the cross section. When remnant of the oxide layer often adversely affects the mechanical properties in the weld, it is called as 'kissing-bond'. The present study systematically examines effect of oxide array on bend property in the root of friction stir (FS) welded Al alloy 1050 by transmission electron microscopy (TEM), and then clarifies identity of the kissing-bond.

  • PDF

A STUDY ON THE SURFACE ROUGHNESS AND REFLECTIVITY AFTER POLISHING OF THE MICROFILL, HYBRID COMPOSITE RESINS (Microfill, Hybrid 복합레진 연마 후 표면조도와 광반사율에 관한 연구)

  • Moon, Anne-Jay;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.513-533
    • /
    • 1994
  • The smooth surface after polishing of composite resin contributes to the patient's comfort, and appearance and longevity of the restoration. This study was performed for the quantitative analysis of the effects of the various finishing and polishing instruments on the surface roughness and reflectivity of the microfill, and hybrid composite resins. Cylindrical specimens 2mm thick and 10mm in diameter of Silux Plus, Durafill VS ; Z100, Prisma TPH, Brilliant, and Herculite XR composite resin were polymerized under the matrix strip. 18 specimens for each composite resin materials were divided into 6 groups ; 5 experimental groups were abraded with # 600 sand paper to remove resin-rich layer, except control. Thereafter, using diamond bur(Mani Dia-Burs), carbide bur(E. T. carbide set 4159), rubber point(Composite polishing kit), aluminum-oxide disk(Sof-Lex disk), polishing paste(Enhance system) ; each specimen was polished to its best achievable surface according to manufacturer's directions. Final polished surfaces were evaluated for the surface roughness with profilometer(${\alpha}$-step 200, Tencor instruments, USA) and for the reflectivity with image analyser(Omniment Image Analyser, Buehler, USA). The results were as follows. 1. Polishing paste or aluminum-oxide disk finish in the microfill, and hybrid composite resins was as smooth as matrix strip finish on the surface roughness test. 2. Polishing paste or aluminum-oxide disk finish in the microfill ; polishing paste finish in the hybrid composite resins was as reflective as matrix strip finish on the refectivity test. 3. For the polishing paste, there were no significant differences between the composite resin materials on the surface roughness and refectivity tests. 4. For the aluminum-oxide disk, the best result was obtained with the microfill composite resin on the surface roughness and reflectivity test. 5. Diamond bur, carbide bur, and rubber point were inappropriate for the final polishing instruments.

  • PDF