• 제목/요약/키워드: aluminum nitrate

검색결과 66건 처리시간 0.026초

팔라디움과 인디움을 담지한 Al 층간가교 몬모릴로나이트 촉매의 수중 질산성질소 환원 특성 (The Reduction Properties of Nitrate in Water with Palladium and Indium on Aluminum Pillared Montmorillonite Catalyst)

  • 정상조
    • 한국물환경학회지
    • /
    • 제34권6호
    • /
    • pp.621-631
    • /
    • 2018
  • In this study, catalyst was made through incipient wetness method using palladium (Pd) as noble metal, indium (In) as secondary metal, and montmorillonite (MK10) and Al pillared montmorillonite (Al-MK10) as supporters. The nitrate reduction rate of the catalysts was measured by batch experiments where H2 gas was used as reducing agent and formic acid as pH controller. Transmission electron microscopy (TEM) equipped with energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were all used to determine the elemental distribution of Pd, In, Al, and Si on catalysts. It was observed that Al pillaring increased the Al/Si elemental composition ratio and point of zero charge of MK10, but decreased its BET specific surface area and pore volume. The nitrate reduction rate of Al-MK10 Pd/In was 2.0 ~ 2.5 times higher than that of MK10 Pd/In using artificial groundwater (GW) in ambient temperature and pressure. Nitrate reduction rates in GW were 1.2 ~ 1.7 times lower than those in distilled deionized water (DDW). Nitrate reduction rates in acidic conditions were higher than those in neutral condition in both GW and DDW. The amount of produced NH3-N over degraded NO3- at acid conditions was lower than that of neutral condition. Even though the leaching of Pd after reaction was measured in DDW it was not detected when both Al-MK10 Pd/In and MK10 Pd/In were used in GW. The modification of montmorillonite as a supporter significantly increased the reductive catalytic activities of nitrates. However, the ratio of producing ammonia by-products to degraded nitrates in ambient temperature and pressure was similar.

DUV와 열의 하이브리드 저온 용액공정에 의해 형성된 Al2O3 게이트 절연막 연구 (Study of Low Temperature Solution-Processed Al2O3 Gate Insulator by DUV and Thermal Hybrid Treatment)

  • 장현규;김원근;오민석;권순형
    • 한국전기전자재료학회논문지
    • /
    • 제33권4호
    • /
    • pp.286-290
    • /
    • 2020
  • The formation of inorganic thin films in low-temperature solution processes is necessary for a wide range of commercial applications of organic electronic devices. Aluminum oxide thin films can be utilized as barrier films that prevent the deterioration of an electronic device due to moisture and oxygen in the air. In addition, they can be used as the gate insulating layers of a thin film transistor. In this study, aluminum oxide thin film were formed using two methods simultaneously, a thermal process and the DUV process, and the properties of the thin films were compared. The result of converting aluminum nitrate hydrate to aluminum oxide through a hybrid process using a thermal treatment and DUV was confirmed by XPS measurements. A film-based a-IGZO TFT was fabricated using the formed inorganic thin film as a gate insulating film to confirm its properties.

Synthesis and Characterization of Carbon nanofibers on Co and Cu Catalysts by Chemical Vapor Deposition

  • Park, Eun-Sil;Kim, Jong-Won;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1687-1691
    • /
    • 2014
  • This study reports on the synthesis of carbon nanofibers via chemical vapor deposition using Co and Cu as catalysts. In order to investigate the suitability of their catalytic activity for the growth of nanofibers, we prepared catalysts for the synthesis of carbon nanofibers with Cobalt nitrate and Copper nitrate, and found the optimum concentration of each respective catalyst. Then we made them react with Aluminum nitrate and Ammonium Molybdate to form precipitates. The precipitates were dried at a temperature of $110^{\circ}C$ in order to be prepared into catalyst powder. The catalyst was sparsely and thinly spread on a quartz tube boat to grow carbon nanofibers via thermal chemical vapor deposition. The characteristics of the synthesized carbon nanofibers were analyzed through SEM, EDS, XRD, Raman, XPS, and TG/DTA, and the specific surface area was measured via BET. Consequently, the characteristics of the synthesized carbon nanofibers were greatly influenced by the concentration ratio of metal catalysts. In particular, uniform carbon nanofibers of 27 nm in diameter grew when the concentration ratio of Co and Cu was 6:4 at $700^{\circ}C$ of calcination temperature; carbon nanofibers synthesized under such conditions showed the best crystallizability, compared to carbon nanofibers synthesized with metal catalysts under different concentration ratios, and revealed 1.26 high amorphicity as well as $292m^2g^{-1}$ high specific surface area.

Assessment of chemical purity of [13N]ammonia injection: Identification of aluminium ion concentration

  • Kim, Ho Young;Park, Jongbum;Lee, Ji Youn;Lee, Yun-Sang;Jeong, Jae Min
    • 대한방사성의약품학회지
    • /
    • 제4권2호
    • /
    • pp.80-84
    • /
    • 2018
  • $[^{13}N]$Ammonia or $[^{13}N]NH_3$ is one of the most widely used PET tracer for the measurement of MBF. To produce $[^{13}N]NH_3$, devarda's alloy which contains aluminum, copper and zinc is used for the purpose of reduction from $^{13}N$-nitrate/nitrite to $[^{13}N]NH_3$. Since aluminum has neurotoxicity and renal toxicity, the amount of it should be carefully limited for the administration to the human body. Although USP and EP provide a way to identify the aluminum ion concentration, there are some difficulties to perform. Therefore, we tried to develop the modified method for verifying aluminum concentration of test solution. We compared color between test and standard solutions using chrome azurol S in pH 4.6 acetate buffer. We also tested color change of test and standard solutions according to pH, amounts and the order of reagent and time difference These results demonstrated that the color change of the solution can reflect quantitatively measure aluminum ion concentration. We hope the method is to be used effectively and practically in many sites where $[^{13}N]NH_3$ is produced.

Synthesis and characterization of AlN nanopowder by the microwave assisted carbothermal reduction and nitridation (CRN)

  • Chun, Seung-Yeop;Chun, Myoung-Pyo
    • 한국결정성장학회지
    • /
    • 제27권5호
    • /
    • pp.223-228
    • /
    • 2017
  • Aluminum nitride (AlN) powder was successfully synthesized at low temperature via carbothermal reduction and nitridation (CRN) assisted by microwave heating. The synthesis processes of AlN powder were investigated with X-ray diffraction, FE-SEM, FT-IR and TGA/DSC. Aluminum nitrate was used as an oxidizer and aluminum source, urea as fuel, and glucose as carbon source. These starting materials were mixed with D.I water and reacted in a flask at $100^{\circ}C$ for 20 minutes. After the reaction was finished, black foamy intermediate product was formed, which was considered to be an amorphous $Al_2O_3$ particles through intermediate product obtained by solution combustion synthesis (SCS) at the results of X-ray diffraction patterns and FT-IR. This intermediate product was nitridated at temperatures of $1300^{\circ}C$ and $1400^{\circ}C$ in $N_2$ atmosphere by a microwave heating furnace and then decarbonated at $600^{\circ}C$ for 2 hours in air. It should be noticed from FE-SEM images that as nitridated particles, identified as AlN from X-ray diffraction patterns, are covered with carbon residues. After decarbonating the nitridated powders, the spherical pure AlN powders were obtained without alumina and their particle sizes were dependent on the nitridating temperature with high temperature of $1400^{\circ}C$ giving large particles of around 70~100 nm.

원자로냉각제 정화용 고온흡착재 개발

  • 김유환;김은기;김광락;안도희;이한수;정흥석
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.145-150
    • /
    • 1996
  • 약 30$0^{\circ}C$, 160 kg/$cm^2$의 원자로냉각재계통에서 사용이 가능한 $^{60}$Co 제거용 고온흡착제를 얻기 위하여, ZrO$_2$를 zirconyl nitrate를 출발물질로 하여 졸-겔법으로, aluminum isopropoxide를 출발 물질로 하여 A1$_2$O$_3$를, aluminum isopropoxide와 titanium tetraisopropoxide를 출발물질로하여 TiO$_2$-A1$_2$O$_3$를, aluminum isopropoxide와 zirconium propoxide를 출발물질로 하여 ZrO$_2$-A1$_2$O$_3$를 금속알콕사이드 가수분해법으로 제조하였다. 제조한 흡착제는 600~140$0^{\circ}C$의 온도로 하소 하였으며, 결정전이, 열적특성, 비표면적 등의 물성변화를 알아보기 위하여 X선회절, 적외선분광분석, 열분석, 전자현미경 관찰, BET 비표면적 등을 측정하였다. 또한, 고온수에서 이들 흡착제의 Co$^{2+}$ 흡착특성을 autoclave를 이용한 회분식 흡착실험으로 알아보았다. 이들 흡착제 제조시 하소온도에 따른 Co$^{2+}$ 흡착량, $Al_2$O$_3$ 흡착제 제조시 pH 변화에 따른 Co$^{2+}$ 흡착량과 TiO$_2$-A1$_2$O$_3$ 흡착제 제조시 TiO$_2$ 함량에 따른 Co$^{2+}$ 흡착량과 25$0^{\circ}C$의 고온에서 ZrO$_2$$Al_2$O$_3$의 표면에 생성된 코발트 화합물을 XPS와 EPMA로 부터 확인하였다.

  • PDF

TiO2 nanotube plate의 질산성질소 전기분해 효율 평가 (The Evaluation of Electrolytic Nitrate Removal Efficiency of TiO2 Nanotube Plate)

  • 김다은;이용호;최효연;한희주;박대원
    • 한국응용과학기술학회지
    • /
    • 제35권3호
    • /
    • pp.612-621
    • /
    • 2018
  • 본 연구에서는 전기분해 방법을 이용한 질산성질소($NO_3{^-}-N$) 분해가 $TiO_2$ nanotube plate 및 구리, 니켈, 스테인리스 스틸, 알루미늄, 주석, 티타늄을 환원전극으로 사용하였을 때 가능한지를 평가하였다. 전극의 전기화학적 특성 평가는 임피던스 측정을 하여 비교하였고, $TiO_2$ nanotube plate의 표면 분석은 주사전자현미경을 통해 SEM 및 BET 분석법을 이용한 비표면적 분석을 통해 비교하였다. 질산성질소 전해실험의 경우 90분의 실험을 진행하였으며, 실험 결과 전극 표면의 부식이 수반되지 않은 $TiO_2$ nanotube plate가 기타 금속 전극에 비해 질산성질소 환원 반응속도가 가장 뛰어난 것으로 확인되었다.

연소 합성 공정을 이용한 Mullite의 합성 (A Study on the Synthesis of Mullite by Combustion Synthesis Process)

  • 이강현;이채현;김택남;김종옥;임대영;박원규
    • 공학논문집
    • /
    • 제2권1호
    • /
    • pp.133-138
    • /
    • 1997
  • Mullite 분말을 합성하는 제조공정에서 기존의 분말합성법은 $1300^{\circ}C$이상의 높은 온도와 긴 반응시간과 cost 면에서 비싸다는 문제점을 안고 있다. 따라서 본 연구에서는 비교적 제조공정이 간단하고 짧은 반응시간내에 낮은 온도에서 미립의 산화물계 분말을 합성할 수 있는 연소 합성법으로 mullite 분말을 합성하였다. 금속의 질산염, 미립의 $SiO_2$분말과 연료를 적정 mole비로 혼합하여 공정변수에 따라 mullite를 합성하고, 그의 물성을 조사하였다. Hot plate에서의 실험은 연료의 양에 관계없이 mullite는 합성되지 않았다. 그러나, $500^{\circ}C$ 열처리로 실험에서는 mullite와 약간의 alumina, cristobalite가 보였고, 특히 aluminum nitrate, silica, urea 각각의 조성이 화학양론비였을 때 거의 완벽한 mullite를 얻을 수 있었다.

  • PDF

알루미늄을 투여한 흰쥐의 해마와 대뇌피질에서 Reactive Oxygen Species 생성으로 인한 생체거대분자의 산화적 손상 (The Effects of Oxidative Stress Induced by Aluminum on Cellular Macromolecules in the Hippocampus and Cerebral Cortex of Rats)

  • 문철진;고현철;신인철;이은희;문해란
    • Toxicological Research
    • /
    • 제20권3호
    • /
    • pp.213-223
    • /
    • 2004
  • This work aimed to study the effectiveness of cellular oxidative parameter (malondial-dehyde, protein carbonyl, and 8-hydroxy-2'deoxyguanosine). The experimental groups were aluminum treated rats and control rats. Aluminum treatd rats were given intraperitoneally aluminum nitrate nonahydrate ($Al^{3+}$, 0.2 mmol/kg) daily for 30 days except Sunday. Control rats were injected 1 ml of saline. After the dose, rats were decapitated and hippocampus and cerebral cortex were removed. The measured parameters were tissue malondialdehyde (MDA, index of lipid peroxidation), protein carbonyl (index of protein oxidation), 8-hydroxy-2'-deoxy-guanosine (8-OHdG, index of DNA oxidation), reduced glutathione (GSH) levels as well as glutathione reductase (GR) and catalase. AI concentrations in the tissues were also measured. All results were corrected by tissue protein levels. The results were as followed; 1. The concentrations of AI in the cortex and hippocampus were significantly higher in the AI-treated rats than in the control rats. 2. Antioxidative enzyme's activity, catalase and GR, were significantly higher in the AI-treated rats than the control rats. GSH levels were also higher in the AI-treated rats. 3. MDA, protein carbonyl, and 8-OHdG concentration of AI-treated rats were significantly higher than those of control rats. 4. The concentrations of antioxidants, and oxidative stress parameter were correlated with the concentrations of AI in hippocampus and cerebral cortex. Catalase and GR activity were also correlated with the concentration of AI. Based on these results, it can be suggested that intraperitoneally injected AI was accumulated in the brain and induced the increase of antioxidant levels and antioxidative enzyme activity. Also, the oxidative products of cellular macromolecules are significantly related to tissue AI concentration. Therefore MDA, protein carbonyl, and 8-OHdG are useful markers for oxidative stress on cellular macromolecules.