• Title/Summary/Keyword: aluminum composite

Search Result 716, Processing Time 0.02 seconds

Analysis of Elastic Constants in SiC Particulate Reinforced Al Matrix Composites by Resonant Ultrasound Spectroscopy (초음파 공명 분광법(RUS)을 이용한 SiC 입자강화 Al 기지복합재료의 탄성계수 해석)

  • Jung, Hyun-Kyu;Cheong, Yong-Moo;Joo, Young-Sang;Hong, Soon-Hyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.180-188
    • /
    • 1999
  • The dynamic elastic properties of metal matrix composites were investigated by resonant ultrasound spectroscopy(RUS). The composites used in this study consisted of 2124 aluminum alloy reinforced with different concentrations of SiC particles. RUS can determine the nine independent elastic stiffness($C_{ij}$) for the orthorhombic symmetry on a small specimen simultaneously. The elastic constants were determined as a function of the volume fraction. A concept of effective aspect ratio. which combine the aspect ratio and the orientation of reinforcement. was used to calculate the initial moduli from Mori-Tanaka theory for the input of RUS minimization code. Young's moduli can be obtained from the measured stiffnesses. The results show that the elastic stiffness increases with increment of the particle content. The behavior of elastic stiffness indicates that the particle redistribution induced by the extrusion process enlarges the transversely isotropic symmetry as the fraction of reinforced particles increase. This relationship could be used for determination of the volume fractions of reinforcement as a potential tool of nondestructive material characterization.

  • PDF

Basic Characteristic Verification of High-damping Laminated Solar Panel with Viscoelastic Adhesive Tape for 6U CubeSat Applications (점탄성 테이프를 적용한 6U 큐브위성용 고댐핑 적층형 태양전지판의 기본 특성 검증)

  • Kim, Su-Hyeon;Kim, Hongrae;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.86-94
    • /
    • 2021
  • PCB-based deployable solar panel is mainly used for CubeSat due to its lightweight and easy of electrical connection. However, as the size of solar panel increases, there is a limit to ensuring the structural safety of solar cells due to excessive dynamic displacement under launch vibration environment. In previous mechanical designs, for the minimization of dynamic deflection, panel stiffness is increased by applying additional stiffeners made of various materials such as aluminum or composite. However, it could have disadvantages for CubeSat design requirements due to limited mass and volumes. In this study, a high-damping 6U solar panel was proposed. It had superior damping characteristic with a multi-layered stiffener laminated with viscoelastic acrylic tapes. Basic characteristics of this solar panel were measured through free-vibration tests. Design effectiveness of the solar panel was validated through qualification-level launch vibration test. Based on test results, vibration characteristics of a typical PCB solar panel and the high-damping laminated solar panel were predicted and a comparative analysis was performed.

The Design of Broadband Ultrasonic Transducers for Fish Species Identification - Bandwidth Enhancement of a Ultrasonic Transducer Using Double Acoustic Matching Layers- (어종식별을 위한 광대역 초음파 변환기의 설계 ( III ) - 이중음향정합층을 이용한 초음파 변환기의 대역폭 확장 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.85-95
    • /
    • 1998
  • The broadband ultrasonic transducers have been designed to use in obtaining the broadband echo signals from fish schools in relation to the identification of fish species. The broadening of bandwidth was achieved by attaching double acoustic matching layers on the front face of a Tonpilz transducer consisted of an aluminum head, a piezoelectric ring, a brass tail and to evaluate the performance characteristics, such as the transmitting voltage response(TVR) of transducers. The constructed transducers were tested experimentally and numerically by changing the parameters such as impedances and thicknesses of the head, tail and matching layers, in the water tank. Also, the developed transducer was excited by a chirp signal and the received chirp waveforms were analyzed. According to the measured TVR results, the available 3 dB bandwidth of the transducer with double matching layers of an $Al_O_3/epoxy$ composite of 7 mm thick and a polyurethane window of 18 mm thick was 7.3 kHz with a center frequency of 38.8 kHz, and the maximum and the minimum values of the TVR in this frequency region were 135.7 dB and 132.7 dB re $1\;{\mu}Pa/V$ at 1 m, respectively. Also, the available 3 dB bandwidth of the transducer with double matching layers of an $Al_O_3/epoxy$ composite of 11 mm thick and a polyurethane window of 15 mm thick was 6.2 kHz with a center frequency of 38.6 kHz, and the maximum TVR value in the frequency region was 136.3 dB re $1\;{\mu}Pa/V$ at 1 m. Reasonable agreement between the experimental results and the numerical results for the TVR of the developed transducers was achieved. The frequency dependant characteristics of experimentally observed chirp signals closely matched to the measured TVR results. These results suggest that there is potential for increasing the bandwidth by varying other parameters in the transducer design and the material of the acoustic matching layers.

  • PDF

Fabrication of a Novel Ultra Low Temperature Co-fired Ceramic (ULTCC) Using BaV2O6 and BaWO4 (BaV2O6와 BaWO4을 이용한 초저온 동시소성 세라믹 제조)

  • Kim, Duwon;Lee, Kyoungho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.11-18
    • /
    • 2021
  • A novel microwave dielectric composite material for ultra-low temperature co-fired ceramics (ULTCC) with (1-x)BaWO4-xBaV2O6 (x=0.54~0.85) composition was prepared by firing a mixture of BaWO4 and BaV2O6. Shrinkage tests showed that the ceramic composite begins to densify at a temperature as low as 550℃ and can be sintered at 650℃ with 98% of relative density under the influence of BaV2O6. X-ray diffraction analysis showed that BaWO4 and BaV2O6 coexisted and no secondary phase was detected in the sintered bodies, implying good chemical compatibility between the two phases. Near-zero temperature coefficients of the resonant frequency (𝛕f) could be achieved by controlling the relative content of the two phases, due to their positive and negative 𝛕f values, respectively. With increasing BaV2O6 (x from 0.53 to 0.85), the 𝛕f value of the composites increased from -7.54 to 14.49 ppm/℃, εr increased from 10.08 to 11.17 and the quality factor (Q×f value) decreased from 47,661 to 37,131 GHz. The best microwave dielectric properties were obtained for x=0.6 samples with εr=10.4, Q×f=44,090 GHz, and 𝛕f=-2.38 ppm/℃. Chemical compatibility experiments showed the developed composites are compatible with aluminum electrode during co-firing process.

TEMPERATURE CHANGE IN THE PULP ACCORDING TO POLISHING CONDITION OF VARIOUS RESTORATIVE MATERIALS (여러가지 수복물의 polishing조건에 따른 치수 온도변화)

  • Baik, Byeong-Ju;Park, Jong-Ha;Yang, Jeong-Suk;Lee, Seung-Young;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.365-376
    • /
    • 1999
  • The importance of finishing and polishing the restoration has been described by several authors. The final step provides for improved metallurgical properties, better marginal adaptation, reduced plaque accumulation. Unfortunately, finishing of the restorations can produce damage from temperature rises at the pulpal wall. The aim of this study was to determine the changes in temperature can be occurred during the use of finishing and polishing instruments under a variety of conditions. ; with or without a water coolant, intermittent or continuous operation, high or low rotation speed, remaining dentin thickness and various restorative materials. Class V preparations were cut on extracted molars and restored with composite resin(Z 100), resin-modified glass ionomer cements(Dyract, Fuji II LC), and amalgam. Finishing was done with aluminum oxide coated disc($Sof-lex^{(R)}$ polishing disc, 3M, USA). The following results were obtained. 1. The rise of temperature during polishing of amalgam restorations was the highest among the all experimental groups except polishing with water coolant(P<0.05). However, there were no statistical differences in temperature rises between Z 100, Dyract and Fuji II LC(P>0.05). 2. The intrapulpal temperature was greatly influenced by the applied time, and intermittent polishing was showed significantly lower temperature rises than continuous polishing(P<0.01). 3. The intrapulpal temperature was increased according to the application of polishing regard less of using water coolant. However, polishing with water coolant showed significantly lower temperature in the pulp than not used water coolant(P<0.01).

  • PDF

Influence of air abrasion and different dentin sealing techniques on microtensile bond strength to dentin (상아질의 봉쇄 시기와 표면처리 방법이 미세인장 결합강도에 미치는 영향)

  • Kang, Dong-Ho;Han, Chong-Hyun;Park, Jung-Won;Kim, Sun-Jai
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.1
    • /
    • pp.8-15
    • /
    • 2010
  • Purpose: The purpose of this study was to evaluate the effect of various methods of dentin bonding agent application and air abrasion pretreatment on microtensile bond strength between dentin and resin, using a self-etching adhesive system. Material and methods: Thirty freshly extracted human molars were obtained and divided into 6 groups of 5 teeth. A 2-step self etching adhesive system (Clearfil SE Bond) was used for all groups. The control specimens were prepared using a direct immediate bonding technique. The delayed dentin sealing specimens were prepared using an indirect approach without dentin prebonding. The immediate dentin sealing specimens were prepared using dentin prebonding immediately following preparation. Immediate dentin sealing teeth and delayed dentin sealing teeth had provisional restorations using Fermit for two weeks. Then all specimens of each group were divided into two groups of three, depending on air abrasion pretreatment. Composite "crowns" were incrementally built on and specimens were stored in water for 24 hours. All teeth were prepared for a microtensile bond strength test. Bond strength data were analyzed with a one-way ANOVA test, and post hoc comparison was done using the Scheffe's test. Results: The mean microtensile bond strengths of all groups were not statistically different from each other. Conclusion: When preparing teeth for indirect restorations, IDS and DDS with Clearfil SE bond, have no difference on the microtensile bond strength between dentin and resin. Air abrasion pretreatment did not affect the microtensile bond strength when using IDS and DDS with Clearfil SE bond.