• Title/Summary/Keyword: aluminum carbide

Search Result 76, Processing Time 0.02 seconds

Characteristics of polycrystalline AlN thin films deposited on 3C-SiC buffer layers for M/NEMS applications (3C-SiC 버퍼층위에 증착된 M/NEMS용 다결정 AlN 박막의 특성)

  • Chung, Gwiy-Sang;Lee, Tae-Won
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.462-466
    • /
    • 2007
  • Aluminum nitride (AlN) thin films were deposited on Si substrates by using polycrystalline (poly) 3C-SiC buffer layers, in which the AlN film was grown by pulsed reactive magnetron sputtering. Characteristics of grown AlN films were investigated experimentally by means of FE-SEM, X-ray diffraction, and FT-IR, respectively. The columnar structure of AlN thin films was observed by FE-SEM. X-ray diffraction pattern proved that the grown AlN film on 3C-SiC layers had highly (002) orientation with low value of FWHM (${\Theta}=1.3^{\circ}$) in the rocking curve around (002) reflections. These results were shown that almost free residual stress existed in the grown AlN film on 3C-SiC buffer layers from the infrared absorbance spectrum. Therefore, the presented results showed that AlN thin films grown on 3C-SiC buffer layers can be used for various piezoelectric fields and M/NEMS applications.

Additive Effects on Sintering of Si/SiC Mixtures (Si/SiC 혼합물의 소결특성에 미치는 첨가제의 영향)

  • Kim, Soo Ryong;Kwon, Woo Teck;Kim, Younghee;Kim, Jong Il;Lee, Yoon Joo;Lee, Hyun Jae;Oh, Sea Cheon
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.701-705
    • /
    • 2012
  • The effects of clay, aluminum hydroxide, and carbon powder on the sintering of a Si/SiC mixture from photovoltaic silicon-wafer production were investigated. Sintering temperature was fixed at $1,350^{\circ}C$ and the sintered bodies were characterized by SEM and XRD to analyze the microstructure and to measure the apparent porosity, absorptivity, and apparent density. The XRD peak intensity of SiC in the sintered body was increased by adding 5% carbon to the Si/SiC mixture. From this result, it is confirmed that Si in the Si/SiC mixture had reacted with the added carbon. Addition of aluminum hydroxide decreased the cristobalite phase and increased the stable mullite phase. The measurement of the physical properties indicates that adding carbon to the Si/SiC mixture enables us to obtain a dense sintered body that has high apparent density and low absorptivity. The sintered body produced from the Si/SiC mixture with aluminum hydroxide and carbon powder as sintering additives can be applied to diesel particulate filters or to heat storage materials, etc., since it possesses high thermal conductivity, and anticorrosion and antioxidation properties.

Die Sinking Electrical Discharge Machining of SiC/AI Metal Matix Composite (탄화규소/알루미늄 금속계 복합재료의 형상방전가공)

  • 왕덕현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.34-40
    • /
    • 1998
  • Conductive metal matrix composite(MMC) material of 30% silicon carbide particulated based on aluminum matrix was machined by die sinking electrical discharge machining(EDM) process according to different current and duty factor for reverse polarity of electrode. Material removal rate(MRR) was examined by process under various operation conditions. The surface morphology was evaluated by surface roughness parameter and scanning electron microscopy(SEM) research. The MRR was suddenly increased over 11 ampere of current, and it was slightly changed over 0.3 of duty factor. The maximum surface roughness of EDMed surface was affected by the duty factor. The SEM photograghs of EDMed surface showed wide recast distribution region of melting materials as increased of current and duty factor.

  • PDF

A Study on the Formation Phase of Self-propagating High-temperature Synthesis of Ti-Al-C alloys (Ti-Al-C 합금의 고온 자전 합성 반응시 생성상에 관한 연구)

  • 문종태
    • Journal of Powder Materials
    • /
    • v.2 no.2
    • /
    • pp.149-157
    • /
    • 1995
  • In this study, an attempt was made to fabricate TiAl as well as its in situ composite via combustion synthesis. The processing variable of the combustion synthesis which include aluminum content and the heating rate were found to affect the combustion temperature. The combustion temperature measured, however, was lower than the melting temperature of TiAl and the reaction product were found to include incomplet reaction products. Carbon was added in order to increase the combustion temperature as well as to form in situ reinforcements. The reaction products showed homogeneous microstructures with carbide phases formed within indicating that the addition of carbon increased the combustion temperature above the melting temperature of TiAl.

  • PDF

FUNDAMENTAL STUDY OF SEMI-DRY FORGING WITH MIST LUBRICATION

  • Matsumoto Ryo;Osakada Kozo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.31-35
    • /
    • 2003
  • Friction in cold forging with mist lubrication is measured with the ring compression test. Small quantity of mist lubricant is sprayed onto the surfaces of cemented tungsten carbide (WC) tools polished to mirror surfaces, and the specimens of pure aluminum are compressed. It is found that spraying small quantity of lubricant $(0.5\;g/m^2)$ is effective to reduce the friction in comparison with the dry condition. The mist particles stick to the tool surface as separated dots, and the behavior of the trapped mist lubricant between the tool and specimen during upsetting is discussed.

  • PDF

The Evaluation of the Laser Machinability for Mechanical Materials using Taguchi Experimental Method Design (다구찌 실험 계획법을 이용한 기계재료의 레이저가공성 평가)

  • Kim, Sang-Kyu;Yoon, Yeo-Myung;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.73-78
    • /
    • 2012
  • Recently, the laser processing method has used as micro-machining technologies in industries of aerospace, electronics and automotive. The laser processing newly focused could be alternative to existing machining method. However, there are few practical results of research about the proper setting of the laser machining conditions and the laser machining characteristics for mechanical materials. The purposes of this study was to choose optimum machining conditions and to estimate the laser machining characteristics using taguchi experimental method for various mechanical materials that is S45C, Stainless steel, Aluminum, Copper, Titanium and Tungsten carbide. From obtained results, it was confirmed that optimum machining conditions could be found and laser machinability depends on thermal conductivity and hardness of workpiece.

Determination of Thermal Conductivity and Numerical Analysis of Al-Cr-N-O Composites Layer Formed by Hydro-thermal Process (수열합성된 Al-Cr-N-O계 도포층의 열전도 측정과 수학적 해석)

  • Kim, Ma-Ro;Yang, So-Eun;Lee, Jong-Jae;Kim, Byeong-Du;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.215-215
    • /
    • 2014
  • Composites layer of Al-Cr-Ni-O system was prepared on a steel plate by hydro-thermal process at $700^{\circ}C$ for 12 hours, which phase identification and thermal conductivity were determined. The composites layer consisted of aluminum nitride, alumina, chromium carbide and aluminium, which density was $3.7kg/m^3$. The thermal conductivity of the coating layer determined by thermal data acquisition system was about 98.0 W/m/ which depended on the AlN content. Numerical modelling of the heat transfer behavior of the coating layer was well agreement with the empirical data.

  • PDF

Covalently-Bonded Solid Solution Formed by Combustion Synthesis

  • Ohyanagi, Manshi;Munir, Zuhair A.
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.250-257
    • /
    • 2000
  • The feasibility of synthesizing SiC-AlN solid solution by field-activated combustion synthesis was demonstrated. At lower fields of 8-16.5V/cm, composites of AlN-rich and SiC-rich phases were synthesized, but at fields of 25-30 V/cm, the product was a 2H structure solid solution. Combustion synthesis of the solid solution by nitridation of aluminum with silicon carbide under a nitrogen gas pressure of 4-8 MPa was also investigated. The maximum combustion temperature and wave propagation velocity were found to be influenced by the electric field in the field-activated combustion synthesis, and by the green density and nitrogen pressure in the combustion nitridation. In both cases the formation of solid solutions is complete within seconds, considerably faster than in conventional methods which require hours.

  • PDF

Corrosion Behavior of Silicon Carbide/7091 Aluminum Matrix Composites (탄화규소/7091알루미늄 복합재료의 부식거동)

  • Kang, Wooseung
    • Corrosion Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.108-111
    • /
    • 2012
  • The effects of volume fraction (15-30%) of SiC particulate reinforcements on the corrosion behavior of SiCp/7091 Al composites in the 3.5% NaCl solution were studied by electrochemical techniques and scanning electron microscopy. The results showed that the amount of SiC particulate reinforcements did not cause much difference in the corrosion behavior of SiCp/7091 Al composites but the corrosion rate was proportional to the amount of SiCp reinforcement. And numerous pits and severe dissolution of the matrix was observed probably due to the discontinuities and galvanic effects between Al matrix and SiC reinforcements.

Structural Ceramics for Automobiles and Industrial Application in Japan (구조용 세라믹스의 자동차와 제조업에의 응용)

  • Okada, Akira
    • Ceramist
    • /
    • v.9 no.6
    • /
    • pp.7-11
    • /
    • 2006
  • The status of structural ceramics in Japan is presented. Use of ceramics for structural components had been limited due to their brittleness, and the successful application was wear resistant parts such as thread guides and ceramic cutting tools up to around 1980. Since then, considerable work has been done for applying ceramics to mechanical parts, and automotive components made of silicon nitride were developed and commercialized in 1980s. Unfortunately, the application of silicon nitride to automotive engines is not so popular in these days. Instead, a variety of structural ceramics such as alumina, silicon carbide and zirconia have recently extended the market, and the expanded application includes vacuum process parts for manufacturing semiconductor and liquid crystal devices, refractory tubes for casting aluminum alloy, and dies for optical lens forming. In addition, cordierite honeycombs and diesel particulate filters are widely used in automobiles. In the present review, the recent application of structural ceramics to automobiles and industries in Japan is summarized.

  • PDF